PD-L1 and VEGF dual blockade enhances anti-tumor effect on brain metastasis in hematogenous metastasis model.
Immunotherapy improves survival outcomes in cancer patients, but there is still an unmet clinical need in the treatment of brain metastases. Here, we used a mouse model to investigate the antitumor effect of programmed death-ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) dual blockade on metastatic brain tumors and evaluated immune responses during treatment. After establishing hematogenous brain metastasis by transplanting murine bladder carcinoma MBT2 cells stably expressing secNLuc reporter via the internal carotid artery of C3H/HeNCrl mice, we observed the formation of metastases not only in the brain parenchyma but also in the ventricles. The observed pathological areas showed that metastases in the ventricle were histologically larger than that in the brain parenchyma. Regarding the total tumor burden in the whole brain as revealed by Nluc activities, the combination of anti-PD-L1 antibody and anti-VEGF antibody showed a stronger anti-tumor effect than each single agent. Anti-PD-L1 antibody alone enhanced CD8+ T cell priming in regional lymph nodes, increased the proportion of activated CD8+ T cells in whole brain, and increased the density of CD8+ cells in the brain parenchyma. Furthermore, anti-VEGF antibody alone decreased microvessel density (MVD) in ventricular metastases, and the combination treatment increased intratumoral CD8+ cell density in the brain parenchyma and ventricular metastases. These results suggest that PD-L1 blockade enhanced cancer immunity not only in brain metastases lesions but also in the regional lymph nodes of the metastases, and that the addition of VEGF blockade increased the antitumor effect by increasing the infiltration of activated CD8+ T cell and decreasing MVD.
Masuda C
,Onishi S
,Yorozu K
,Kurasawa M
,Morinaga M
,Wakita D
,Sugimoto M
... -
《-》
Depression decreases immunity and PD-L1 inhibitor efficacy via the hypothalamic-pituitary-adrenal (HPA) axis in triple-negative breast cancer.
Depression weakens antitumor immunity, yet the underlying mechanisms linking depression and tumor growth remain unclear. This study examines the influence of depression on the hypothalamic-pituitary-adrenal (HPA) axis, immunological function, and effectiveness of immunotherapy in triple-negative breast cancer (TNBC) patients.
A mouse model of comorbid TNBC and depression was established via chronic restraint stress (CRS) and 4T1 tumor transplantation. A programmed cell death ligand 1 (PD-L1) inhibitor was used to manage mice with TNBC, and the ability of metyrapone to reverse the immune system changes induced by HPA axis activation in depression was evaluated. Mouse peripheral blood was used to measure HPA axis activity, immune cell numbers and cytokine levels.
Depression activates the HPA axis, leading to increased levels of glucocorticoids. Depression led to an increase in the B-cell number and a reduction in the CD4+ T-cell and CD8+ T-cell numbers, without a statistically significant difference in the regulatory T (Treg) cell number. Furthermore, depression increased the levels of the cytokines interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-4, IL-6, IL-8, and tumor necrosis factor (TNF)-α while decreasing the levels of IL-2 and IL-10. Similar results were observed in the context of PD-L1 inhibitor therapy. The depressed mice presented an increased tumor burden and a poor response to the PD-L1 inhibitor. The application of metyrapone during PD-L1 inhibitor treatment resulted in partial restoration of these depression-related alterations.
Depression reduces the effectiveness of PD-L1 inhibitors by altering the number of immune cells and the levels of cytokines through activation of the HPA axis.
Depression is common in breast cancer patients and is associated with reduced antitumor immunity. There is limited knowledge regarding the specific mechanisms through which depression impairs antitumor immunity. Immunotherapy, which promotes the restoration of antitumor immunity, represents a promising treatment strategy for TNBC patients. However, the efficacy of immunotherapy can be compromised by depressive symptoms and the administration of glucocorticoids during treatment. It is still uncertain whether increasing glucocorticoid levels can reduce the efficacy of immunotherapy in patients with depression. The potential benefits of combining immunotherapy with glucocorticoid inhibitors compared with immunotherapy alone need to be evaluated for TNBC patients with concurrent depressive symptoms. Therefore, further clarification of the specific mechanisms by which depression impairs antitumor immunity is needed to inform future optimization of immunotherapy strategies.
Yu S
,Gan C
,Li W
,Zhang Q
,Cai Y
,Xu J
,Huang R
,Yao S
,Cheng L
,Cheng H
... -
《-》
Manganese improves anti-PD-L1 immunotherapy via eliciting type I interferon signaling in melanoma.
The immune checkpoint inhibitor therapy represented by blocking programmed cell death protein 1/ programmed cell death-ligand 1 (PD-1/PD-L1) has made significant progress in melanoma treatment. However, the response rate and therapeutic effect of immunotherapy alone are still not ideal for melanoma. In this study, we aimed to evaluate the defects of treating anti-PD-L1 alone and the therapeutic effect and molecular mechanism of combined therapy with anti-PD-L1 and MnCl2. We detected the changes of immune cell populations after anti-PD-L1 treatment in melanoma xenograft mouse model. Further, we evaluated the regulatory effect of MnCl2 on dendritic cells (DCs) maturation in vitro. Next, we tested the therapeutic effect and regulatory effect on the tumor microenvironment with anti-PD-L1 and MnCl2 via combining treatment with anti-PD-L1 and MnCl2. Anti-PD-L1 therapy has a certain tumor suppressive function, but the effect is not ideal. The results of flow cytometry showed that the number of CD4+ T cells and CD8+ T cells significantly increased after anti-PD-L1 treatment. However, the number of DCs remained basically unchanged after anti-PD-L1 treatment. In vitro, we confirmed that MnCl2 significantly promoted DCs maturation vis activating cGAS-STING signaling pathway. The combination of anti-PD-L1 and MnCl2 displayed the best tumor suppression effect in melanoma xenograft mouse model. In tumor microenvironment, the infiltration of T cells and the maturation of DCs were significantly promoted, demonstrating a strong anti-tumor immune response. In summary, we conclude that combining anti-PD-L1 with MnCl2 is a promising therapeutic strategy for melanoma.
Zhang X
,Deng J
,Wu R
,Hu J
... -
《-》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》