Manganese improves anti-PD-L1 immunotherapy via eliciting type I interferon signaling in melanoma.
摘要:
The immune checkpoint inhibitor therapy represented by blocking programmed cell death protein 1/ programmed cell death-ligand 1 (PD-1/PD-L1) has made significant progress in melanoma treatment. However, the response rate and therapeutic effect of immunotherapy alone are still not ideal for melanoma. In this study, we aimed to evaluate the defects of treating anti-PD-L1 alone and the therapeutic effect and molecular mechanism of combined therapy with anti-PD-L1 and MnCl2. We detected the changes of immune cell populations after anti-PD-L1 treatment in melanoma xenograft mouse model. Further, we evaluated the regulatory effect of MnCl2 on dendritic cells (DCs) maturation in vitro. Next, we tested the therapeutic effect and regulatory effect on the tumor microenvironment with anti-PD-L1 and MnCl2 via combining treatment with anti-PD-L1 and MnCl2. Anti-PD-L1 therapy has a certain tumor suppressive function, but the effect is not ideal. The results of flow cytometry showed that the number of CD4+ T cells and CD8+ T cells significantly increased after anti-PD-L1 treatment. However, the number of DCs remained basically unchanged after anti-PD-L1 treatment. In vitro, we confirmed that MnCl2 significantly promoted DCs maturation vis activating cGAS-STING signaling pathway. The combination of anti-PD-L1 and MnCl2 displayed the best tumor suppression effect in melanoma xenograft mouse model. In tumor microenvironment, the infiltration of T cells and the maturation of DCs were significantly promoted, demonstrating a strong anti-tumor immune response. In summary, we conclude that combining anti-PD-L1 with MnCl2 is a promising therapeutic strategy for melanoma.
收起
展开
DOI:
10.1007/s10637-024-01484-6
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无