-
Investigation of the relationship between COVID-19 and pancreatic cancer using bioinformatics and systems biology approaches.
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, poses a huge threat to human health. Pancreatic cancer (PC) is a malignant tumor with high mortality. Research suggests that infection with SARS-CoV-2 may increase disease severity and risk of death in patients with pancreatic cancer, while pancreatic cancer may also increase the likelihood of contracting SARS-CoV-2, but the link is unclear.
This study investigated the transcriptional profiles of COVID-19 and PC patients, along with their respective healthy controls, using bioinformatics and systems biology approaches to uncover the molecular mechanisms linking the 2 diseases. Specifically, gene expression data for COVID-19 and PC patients were obtained from the Gene Expression Omnibus datasets, and common differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses were performed on the common DEGs to elucidate the regulatory relationships between the diseases. Additionally, hub genes were identified by constructing a protein-protein interaction network from the shared DEGs. Using these hub genes, we conducted regulatory network analyses of microRNA/transcription factors-genes relationships, and predicted potential drugs for treating COVID-19 and PC.
A total of 1722 and 2979 DEGs were identified from the transcriptome data of PC (GSE119794) and COVID-19 (GSE196822), respectively. Among these, 236 common DEGs were found between COVID-19 and PC based on protein-protein interaction analysis. Functional enrichment analysis indicated that these shared DEGs were involved in pathways related to viral genome replication and tumorigenesis. Additionally, 10 hub genes, including extra spindle pole bodies like 1, holliday junction recognition protein, marker of proliferation Ki-67, kinesin family member 4A, cyclin-dependent kinase 1, topoisomerase II alpha, cyclin B2, ubiquitin-conjugating enzyme E2 C, aurora kinase B, and targeting protein for Xklp2, were identified. Regulatory network analysis revealed 42 transcription factors and 23 microRNAs as transcriptional regulatory signals. Importantly, lucanthone, etoposide, troglitazone, resveratrol, calcitriol, ciclopirox, dasatinib, enterolactone, methotrexate, and irinotecan emerged as potential therapeutic agents against both COVID-19 and PC.
This study unveils potential shared pathogenic mechanisms between PC and COVID-19, offering novel insights for future research and therapeutic strategies for the treatment of PC and SARS-CoV-2 infection.
Fang C
,Sun H
,Wen J
,Wu X
,Wu Q
,Zhai D
... -
《-》
-
Demonstration of the impact of COVID-19 on metabolic associated fatty liver disease by bioinformatics and system biology approach.
Severe coronavirus disease 2019 (COVID-19) has caused a great threat to human health. Metabolic associated fatty liver disease (MAFLD) is a liver disease with a high prevalence rate. Previous studies indicated that MAFLD led to increased mortality and severe case rates of COVID-19 patients, but its mechanism remains unclear.
This study analyzed the transcriptional profiles of COVID-19 and MAFLD patients and their respective healthy controls from the perspectives of bioinformatics and systems biology to explore the underlying molecular mechanisms between the 2 diseases. Specifically, gene expression profiles of COVID-19 and MAFLD patients were acquired from the gene expression omnibus datasets and screened shared differentially expressed genes (DEGs). Gene ontology and pathway function enrichment analysis were performed for common DEGs to reveal the regulatory relationship between the 2 diseases. Besides, the hub genes were extracted by constructing a protein-protein interaction network of shared DEGs. Based on these hub genes, we conducted regulatory network analysis of microRNA/transcription factors-genes and gene - disease relationship and predicted potential drugs for the treatment of COVID-19 and MAFLD.
A total of 3734 and 589 DEGs were screened from the transcriptome data of MAFLD (GSE183229) and COVID-19 (GSE196822), respectively, and 80 common DEGs were identified between COVID-19 and MAFLD. Functional enrichment analysis revealed that the shared DEGs were involved in inflammatory reaction, immune response and metabolic regulation. In addition, 10 hub genes including SERPINE1, IL1RN, THBS1, TNFAIP6, GADD45B, TNFRSF12A, PLA2G7, PTGES, PTX3 and GADD45G were identified. From the interaction network analysis, 41 transcription factors and 151 micro-RNAs were found to be the regulatory signals. Some mental, Inflammatory, liver diseases were found to be most related with the hub genes. Importantly, parthenolide, luteolin, apigenin and MS-275 have shown possibility as therapeutic agents against COVID-19 and MAFLD.
This study reveals the potential common pathogenesis between MAFLD and COVID-19, providing novel clues for future research and treatment of MAFLD and severe acute respiratory syndrome coronavirus 2 infection.
Huang T
,Zheng D
,Song Y
,Pan H
,Qiu G
,Xiang Y
,Wang Z
,Wang F
... -
《-》
-
Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV.
The severe coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in the most devastating pandemic in modern history. Human immunodeficiency virus (HIV) destroys immune system cells and weakens the body's ability to resist daily infections and diseases. Furthermore, HIV-infected individuals had double COVID-19 mortality risk and experienced worse COVID-related outcomes. However, the existing research still lacks the understanding of the molecular mechanism underlying crosstalk between COVID-19 and HIV. The aim of our work was to illustrate blood transcriptome crosstalk between COVID-19 and HIV and to provide potential drugs that might be useful for the treatment of HIV-infected COVID-19 patients.
COVID-19 datasets (GSE171110 and GSE152418) were downloaded from Gene Expression Omnibus (GEO) database, including 54 whole-blood samples and 33 peripheral blood mononuclear cells samples, respectively. HIV dataset (GSE37250) was also obtained from GEO database, containing 537 whole-blood samples. Next, the "Deseq2" package was used to identify differentially expressed genes (DEGs) between COVID-19 datasets (GSE171110 and GSE152418) and the "limma" package was utilized to identify DEGs between HIV dataset (GSE37250). By intersecting these two DEG sets, we generated common DEGs for further analysis, containing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional enrichment analysis, protein-protein interaction (PPI) analysis, transcription factor (TF) candidate identification, microRNAs (miRNAs) candidate identification and drug candidate identification.
In this study, a total of 3213 DEGs were identified from the merged COVID-19 dataset (GSE171110 and GSE152418), and 1718 DEGs were obtained from GSE37250 dataset. Then, we identified 394 common DEGs from the intersection of the DEGs in COVID-19 and HIV datasets. GO and KEGG enrichment analysis indicated that common DEGs were mainly gathered in chromosome-related and cell cycle-related signal pathways. Top ten hub genes (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5, RRM2) were ranked according to their scores, which were screened out using degree algorithm on the basis of common DEGs. Moreover, top ten drug candidates (LUCANTHONE, Dasatinib, etoposide, Enterolactone, troglitazone, testosterone, estradiol, calcitriol, resveratrol, tetradioxin) ranked by their P values were screened out, which maybe be beneficial for the treatment of HIV-infected COVID-19 patients.
In this study, we provide potential molecular targets, signaling pathways, small molecular compounds, and promising biomarkers that contribute to worse COVID-19 prognosis in patients with HIV, which might contribute to precise diagnosis and treatment for HIV-infected COVID-19 patients.
Yan C
,Niu Y
,Wang X
《Frontiers in Immunology》
-
Identification of critical genes and molecular pathways in COVID-19 myocarditis and constructing gene regulatory networks by bioinformatic analysis.
Zhang F
,Yu C
,Xu W
,Li X
,Feng J
,Shi H
,Yang J
,Sun Q
,Cao X
,Zhang L
,Peng M
... -
《PLoS One》
-
Bioinformatics and system biology approaches to determine the connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients.
With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs.
This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19.
This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.
Zhou X
,Huang T
,Pan H
,Du A
,Wu T
,Lan J
,Song Y
,Lv Y
,He F
,Yuan K
... -
《PLoS One》