-
Blood transcriptome analysis revealed the crosstalk between COVID-19 and HIV.
The severe coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in the most devastating pandemic in modern history. Human immunodeficiency virus (HIV) destroys immune system cells and weakens the body's ability to resist daily infections and diseases. Furthermore, HIV-infected individuals had double COVID-19 mortality risk and experienced worse COVID-related outcomes. However, the existing research still lacks the understanding of the molecular mechanism underlying crosstalk between COVID-19 and HIV. The aim of our work was to illustrate blood transcriptome crosstalk between COVID-19 and HIV and to provide potential drugs that might be useful for the treatment of HIV-infected COVID-19 patients.
COVID-19 datasets (GSE171110 and GSE152418) were downloaded from Gene Expression Omnibus (GEO) database, including 54 whole-blood samples and 33 peripheral blood mononuclear cells samples, respectively. HIV dataset (GSE37250) was also obtained from GEO database, containing 537 whole-blood samples. Next, the "Deseq2" package was used to identify differentially expressed genes (DEGs) between COVID-19 datasets (GSE171110 and GSE152418) and the "limma" package was utilized to identify DEGs between HIV dataset (GSE37250). By intersecting these two DEG sets, we generated common DEGs for further analysis, containing Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional enrichment analysis, protein-protein interaction (PPI) analysis, transcription factor (TF) candidate identification, microRNAs (miRNAs) candidate identification and drug candidate identification.
In this study, a total of 3213 DEGs were identified from the merged COVID-19 dataset (GSE171110 and GSE152418), and 1718 DEGs were obtained from GSE37250 dataset. Then, we identified 394 common DEGs from the intersection of the DEGs in COVID-19 and HIV datasets. GO and KEGG enrichment analysis indicated that common DEGs were mainly gathered in chromosome-related and cell cycle-related signal pathways. Top ten hub genes (CCNA2, CCNB1, CDC20, TOP2A, AURKB, PLK1, BUB1B, KIF11, DLGAP5, RRM2) were ranked according to their scores, which were screened out using degree algorithm on the basis of common DEGs. Moreover, top ten drug candidates (LUCANTHONE, Dasatinib, etoposide, Enterolactone, troglitazone, testosterone, estradiol, calcitriol, resveratrol, tetradioxin) ranked by their P values were screened out, which maybe be beneficial for the treatment of HIV-infected COVID-19 patients.
In this study, we provide potential molecular targets, signaling pathways, small molecular compounds, and promising biomarkers that contribute to worse COVID-19 prognosis in patients with HIV, which might contribute to precise diagnosis and treatment for HIV-infected COVID-19 patients.
Yan C
,Niu Y
,Wang X
《Frontiers in Immunology》
-
Gene crosstalk between COVID-19 and preeclampsia revealed by blood transcriptome analysis.
Chu Y
,Li M
,Sun M
,Wang J
,Xin W
,Xu L
... -
《Frontiers in Immunology》
-
Network-Based Data Analysis Reveals Ion Channel-Related Gene Features in COVID-19: A Bioinformatic Approach.
Coronavirus disease 2019 (COVID-19) seriously threatens human health and has been disseminated worldwide. Although there are several treatments for COVID-19, its control is currently suboptimal. Therefore, the development of novel strategies to treat COVID-19 is necessary. Ion channels are located on the membranes of all excitable cells and many intracellular organelles and are key components involved in various biological processes. They are a target of interest when searching for drug targets. This study aimed to reveal the relevant molecular features of ion channel genes in COVID-19 based on bioinformatic analyses. The RNA-sequencing data of patients with COVID-19 and healthy subjects (GSE152418 and GSE171110 datasets) were obtained from the Gene Expression Omnibus (GEO) database. Ion channel genes were selected from the Hugo Gene Nomenclature Committee (HGNC) database. The RStudio software was used to process the data based on the corresponding R language package to identify ion channel-associated differentially expressed genes (DEGs). Based on the DEGs, Gene Ontology (GO) functional and pathway enrichment analyses were performed using the Enrichr web tool. The STRING database was used to generate a protein-protein interaction (PPI) network, and the Cytoscape software was used to screen for hub genes in the PPI network based on the cytoHubba plug-in. Transcription factors (TF)-DEG, DEG-microRNA (miRNA) and DEG-disease association networks were constructed using the NetworkAnalyst web tool. Finally, the screened hub genes as drug targets were subjected to enrichment analysis based on the DSigDB using the Enrichr web tool to identify potential therapeutic agents for COVID-19. A total of 29 ion channel-associated DEGs were identified. GO functional analysis showed that the DEGs were integral components of the plasma membrane and were mainly involved in inorganic cation transmembrane transport and ion channel activity functions. Pathway analysis showed that the DEGs were mainly involved in nicotine addiction, calcium regulation in the cardiac cell and neuronal system pathways. The top 10 hub genes screened based on the PPI network included KCNA2, KCNJ4, CACNA1A, CACNA1E, NALCN, KCNA5, CACNA2D1, TRPC1, TRPM3 and KCNN3. The TF-DEG and DEG-miRNA networks revealed significant TFs (FOXC1, GATA2, HINFP, USF2, JUN and NFKB1) and miRNAs (hsa-mir-146a-5p, hsa-mir-27a-3p, hsa-mir-335-5p, hsa-let-7b-5p and hsa-mir-129-2-3p). Gene-disease association network analysis revealed that the DEGs were closely associated with intellectual disability and cerebellar ataxia. Drug-target enrichment analysis showed that the relevant drugs targeting the hub genes CACNA2D1, CACNA1A, CACNA1E, KCNA2 and KCNA5 were gabapentin, gabapentin enacarbil, pregabalin, guanidine hydrochloride and 4-aminopyridine. The results of this study provide a valuable basis for exploring the mechanisms of ion channel genes in COVID-19 and clues for developing therapeutic strategies for COVID-19.
Zhang H
,Feng T
《-》
-
Bioinformatics and system biology approach to identify the influences among COVID-19, influenza, and HIV on the regulation of gene expression.
Coronavirus disease (COVID-19), caused by SARS-CoV-2, has emerged as a infectious disease, coexisting with widespread seasonal and sporadic influenza epidemics globally. Individuals living with HIV, characterized by compromised immune systems, face an elevated risk of severe outcomes and increased mortality when affected by COVID-19. Despite this connection, the molecular intricacies linking COVID-19, influenza, and HIV remain unclear. Our research endeavors to elucidate the shared pathways and molecular markers in individuals with HIV concurrently infected with COVID-19 and influenza. Furthermore, we aim to identify potential medications that may prove beneficial in managing these three interconnected illnesses.
Sequencing data for COVID-19 (GSE157103), influenza (GSE185576), and HIV (GSE195434) were retrieved from the GEO database. Commonly expressed differentially expressed genes (DEGs) were identified across the three datasets, followed by immune infiltration analysis and diagnostic ROC analysis on the DEGs. Functional enrichment analysis was performed using GO/KEGG and Gene Set Enrichment Analysis (GSEA). Hub genes were screened through a Protein-Protein Interaction networks (PPIs) analysis among DEGs. Analysis of miRNAs, transcription factors, drug chemicals, diseases, and RNA-binding proteins was conducted based on the identified hub genes. Finally, quantitative PCR (qPCR) expression verification was undertaken for selected hub genes.
The analysis of the three datasets revealed a total of 22 shared DEGs, with the majority exhibiting an area under the curve value exceeding 0.7. Functional enrichment analysis with GO/KEGG and GSEA primarily highlighted signaling pathways associated with ribosomes and tumors. The ten identified hub genes included IFI44L, IFI44, RSAD2, ISG15, IFIT3, OAS1, EIF2AK2, IFI27, OASL, and EPSTI1. Additionally, five crucial miRNAs (hsa-miR-8060, hsa-miR-6890-5p, hsa-miR-5003-3p, hsa-miR-6893-3p, and hsa-miR-6069), five essential transcription factors (CREB1, CEBPB, EGR1, EP300, and IRF1), and the top ten significant drug chemicals (estradiol, progesterone, tretinoin, calcitriol, fluorouracil, methotrexate, lipopolysaccharide, valproic acid, silicon dioxide, cyclosporine) were identified.
This research provides valuable insights into shared molecular targets, signaling pathways, drug chemicals, and potential biomarkers for individuals facing the complex intersection of COVID-19, influenza, and HIV. These findings hold promise for enhancing the precision of diagnosis and treatment for individuals with HIV co-infected with COVID-19 and influenza.
Zhang Z
,Jin H
,Zhang X
,Bai M
,Zheng K
,Tian J
,Deng B
,Mao L
,Qiu P
,Huang B
... -
《Frontiers in Immunology》
-
Identifying hub genes and common biological pathways between COVID-19 and benign prostatic hyperplasia by machine learning algorithms.
COVID-19, a serious respiratory disease that has the potential to affect numerous organs, is a serious threat to the health of people around the world. The objective of this article is to investigate the potential biological targets and mechanisms by which SARS-CoV-2 affects benign prostatic hyperplasia (BPH) and related symptoms.
We downloaded the COVID-19 datasets (GSE157103 and GSE166253) and the BPH datasets (GSE7307 and GSE132714) from the Gene Expression Omnibus (GEO) database. In GSE157103 and GSE7307, differentially expressed genes (DEGs) were found using the "Limma" package, and the intersection was utilized to obtain common DEGs. Further analyses followed, including those using Protein-Protein Interaction (PPI), Gene Ontology (GO) function enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Potential hub genes were screened using three machine learning methods, and they were later verified using GSE132714 and GSE166253. The CIBERSORT analysis and the identification of transcription factors, miRNAs, and drugs as candidates were among the subsequent analyses.
We identified 97 common DEGs from GSE157103 and GSE7307. According to the GO and KEGG analyses, the primary gene enrichment pathways were immune-related pathways. Machine learning methods were used to identify five hub genes (BIRC5, DNAJC4, DTL, LILRB2, and NDC80). They had good diagnostic properties in the training sets and were validated in the validation sets. According to CIBERSORT analysis, hub genes were closely related to CD4 memory activated of T cells, T cells regulatory and NK cells activated. The top 10 drug candidates (lucanthone, phytoestrogens, etoposide, dasatinib, piroxicam, pyrvinium, rapamycin, niclosamide, genistein, and testosterone) will also be evaluated by the P value, which is expected to be helpful for the treatment of COVID-19-infected patients with BPH.
Our findings reveal common signaling pathways, possible biological targets, and promising small molecule drugs for BPH and COVID-19. This is crucial to understand the potential common pathogenic and susceptibility pathways between them.
Zhou H
,Xu M
,Hu P
,Li Y
,Ren C
,Li M
,Pan Y
,Wang S
,Liu X
... -
《-》