Predictive value of inflammation and nutritional index in immunotherapy for stage IV non-small cell lung cancer and model construction.
Identifying individuals poised to gain from immune checkpoint inhibitor (ICI) therapies is a pivotal element in the realm of tailored healthcare. The expression level of Programmed Death Ligand 1 (PD-L1) has been linked to the response to ICI therapy, but its assessment typically requires substantial tumor tissue, which can be challenging to obtain. In contrast, blood samples are more feasible for clinical application. A number of promising peripheral biomarkers have been proposed to overcome this hurdle. This research aims to evaluate the prognostic utility of the albumin-to-lactate dehydrogenase ratio (LAR), the Pan-immune-inflammation Value (PIV), and the Prognostic Nutritional Index (PNI) in predicting the response to ICI therapy in individuals with advanced non-small cell lung cancer (NSCLC). Furthermore, the study seeks to construct a predictive nomogram that includes these markers to facilitate the selection of patients with a higher likelihood of benefiting from ICI therapy. A research initiative scrutinized the treatment records of 157 advanced NSCLC patients who received ICI therapy across two Jiangxi medical centers. The cohort from Jiangxi Provincial People's Hospital (comprising 108 patients) was utilized for the training dataset, while the contingent from Jiangxi Cancer Hospital (49 patients) served for validation purposes. Stratification was based on established LAR, PIV, and PNI benchmarks to explore associations with DCR and ORR metrics. Factorial influences on ICI treatment success were discerned through univariate and multivariate Cox regression analysis. Subsequently, a Nomogram was devised to forecast outcomes, its precision gauged by ROC and calibration curves, DCA analysis, and cross-institutional validation. In the training group, the optimal threshold values for LAR, PIV, and PNI were identified as 5.205, 297.49, and 44.6, respectively. Based on these thresholds, LAR, PIV, and PNI were categorized into high (≥ Cut-off) and low (< Cut-off) groups. Patients with low LAR (L-LAR), low PIV (L-PIV), and high PNI (H-PNI) exhibited a higher disease control rate (DCR) (P < 0.05) and longer median progression-free survival (PFS) (P < 0.05). Cox multivariate analysis indicated that PS, malignant pleural effusion, liver metastasis, high PIV (H-PIV), and low PNI (L-PNI) were risk factors adversely affecting the efficacy of immunotherapy (P < 0.05). The Nomogram model predicted a concordance index (C-index) of 0.78 (95% CI: 0.73-0.84). The areas under the ROC curve (AUC) for the training group at 6, 9, and 12 months were 0.900, 0.869, and 0.866, respectively, while the AUCs for the external validation group at the same time points were 0.800, 0.886, and 0.801, respectively. Throughout immunotherapy, PIV and PNI could act as prospective indicators for forecasting treatment success in NSCLC patients, while the devised Nomogram model exhibits strong predictive performance for patient prognoses.
Lei W
,Wang W
,Qin S
,Yao W
... -
《Scientific Reports》
Construction of a prognostic model for extensive-stage small cell lung cancer patients undergoing immune therapy in northernmost China and prediction of treatment efficacy based on response status at different time points.
Recently, the emergence of immune checkpoint inhibitors has significantly improved the survival of patients with extensive-stage small cell lung cancer. However, not all patients can benefit from immunotherapy; therefore, there is an urgent need for precise predictive markers to screen the population for the benefit of immunotherapy. However, single markers have limited predictive accuracy, so a comprehensive predictive model is needed to better enable precision immunotherapy. The aim of this study was to establish a prognostic model for immunotherapy in ES-SCLC patients using basic clinical characteristics and peripheral hematological indices of the patients, which would provide a strategy for the clinical realization of precision immunotherapy and improve the prognosis of small cell lung cancer patients.
This research retrospectively collected data from ES-SCLC patients treated with PD-1/PD-L1 inhibitors between March 1, 2019, and October 31, 2022, at Harbin Medical University Cancer Hospital. The study data was randomly split into training and validation sets in a 7:3 ratio. Variables associated with patients' overall survival were screened and modeled by univariate and multivariate Cox regression analyses. Models were presented visually via Nomogram plots. Model discrimination was evaluated by Harrell's C index, tROC, and tAUC. The calibration of the model was assessed by calibration curves. In addition, the clinical utility of the model was assessed using a DCA curve. After calculating the total risk score of patients in the training set, patients were stratified by risk using percentile partitioning. The Kaplan-Meier method was used to plot OS and PFS survival curves for different risk groups and response statuses at different milestone time points. Differences in survival time groups were compared using the chi-square test. Statistical analysis software included R 4.1.2 and SPSS 26.
This study included a total of 113 ES-SCLC patients who received immunotherapy, including 79 in the training set and 34 in the validation set. Six variables associated with poorer OS in patients were screened by Cox regression analysis: liver metastasis (P = 0.001), bone metastasis (P = 0.013), NLR < 2.14 (P = 0.005), LIPI assessed as poor (P < 0.001), PNI < 51.03 (P = 0.002), and LDH ≥ 146.5 (P = 0.037). A prognostic model for immunotherapy in ES-SCLC patients was constructed based on the above variables. The Harrell's C-index in the training and validation sets of the model was 0.85 (95% CI 0.76-0.93) and 0.88 (95% CI 0.76-0.99), respectively; the AUC values corresponding to 12, 18, and 24 months in the tROC curves of the training set were 0.745, 0.848, and 0.819 in the training set and 0.858, 0.904 and 0.828 in the validation set; the tAUC curves show that the overall tAUC is > 0.7 and does not fluctuate much over time in both the training and validation sets. The calibration plot demonstrated the good calibration of the model, and the DCA curve indicated that the model had practical clinical applications. Patients in the training set were categorized into low, intermediate, and high risk groups based on their predicted risk scores in the Nomogram graphs. In the training set, 52 patients (66%) died with a median OS of 15.0 months and a median PFS of 7.8 months. Compared with the high-risk group (median OS: 12.3 months), the median OS was significantly longer in the intermediate-risk group (median OS: 24.5 months, HR = 0.47, P = 0.038) and the low-risk group (median OS not reached, HR = 0.14, P = 0.007). And, the median PFS was also significantly prolonged in the intermediate-risk group (median PFS: 12.7 months, HR = 0.45, P = 0.026) and low-risk group (median PFS not reached, HR = 0.12, P = 0.004) compared with the high-risk group (median PFS: 6.2 months). Similar results were obtained in the validation set. In addition, we observed that in real-world ES-SCLC patients, at 6 weeks after immunotherapy, the median OS was significantly longer in responders than in non-responders (median OS: 19.5 months vs. 11.9 months, P = 0.033). Similar results were obtained at 12 weeks (median OS: 20.7 months vs 11.9 months, P = 0.044) and 20 weeks (median OS: 20.7 months vs 11.7 months, P = 0.015). Finally, we found that in the real world, ES-SCLC patients without liver metastasis (P = 0.002), bone metastasis (P = 0.001) and a total number of metastatic organs < 2 (P = 0.002) are more likely to become long-term survivors after receiving immunotherapy.
This study constructed a new prognostic model based on basic patient clinical characteristics and peripheral blood indices, which can be a good predictor of the prognosis of immunotherapy in ES-SCLC patients; in the real world, the response status at milestone time points (6, 12, and 20 weeks) can be a good indicator of long-term survival in ES-SCLC patients receiving immunotherapy.
Dang J
,Xu G
,Guo G
,Zhang H
,Shang L
... -
《-》
Pretreatment prognostic nutritional index as a novel biomarker in non-small cell lung cancer patients treated with immune checkpoint inhibitors.
Immune checkpoint inhibitors (ICIs) have been established as a novel strategy for non-small cell lung cancer (NSCLC) therapy. However, a definitive biomarker that can predict response to ICI therapy remains unestablished. The prognostic nutritional index (PNI) is used to assess immune-nutritional conditions and is a prognostic factor in patients with various malignancies; however, its usefulness as a biomarker of response to ICI therapy and survival outcomes in NSCLC patients is unknown. Thus, we retrospectively analyzed the clinicopathological features of advanced-stage or recurrent NSCLC patients treated with ICI therapy to identify predictors of response to ICI therapy and investigate the effects of pretreatment PNI levels on survival after ICI therapy.
We selected 102 consecutive NSCLC patients who were treated with ICI therapy from November 2015 to February 2019. We measured their pretreatment PNI levels and performed univariate and multivariate Cox regression analyses of progression-free survival (PFS) or overall survival (OS) after ICI therapy.
Pretreatment PNI levels were significantly associated with response to ICI therapy (objective response rate:P = 0.0131; disease control rate: P = 0.0002), PFS (P = 0.0013), and OS (P = 0.0053). In univariate and multivariate analyses of the associations between PNI, C-reactive protein (CRP) or neutrophil-lymphocyte ratio (NLR) and PFS or OS, NLR and PNI, but not CRP, are independent prognostic factors for PFS (NLR: relative risk [RR]=1.655, 95% confidence interval [CI]: 1.012-2.743, P = 0.0449, PNI: RR=1.704, 95% CI: 1.039-2.828, P = 0.0346). Only PNI showed a trend towards being an independent prognostic factor for OS (RR=1.606, 95% CI: 0.952-2.745, P = 0.0761).
The pretreatment PNI has the potential to be a simple and novel predictive biomarker of ICI response in NSCLC patients and might help to identify patients who will obtain a survival benefit from ICI therapy.
Shoji F
,Takeoka H
,Kozuma Y
,Toyokawa G
,Yamazaki K
,Ichiki M
,Takeo S
... -
《-》
Novel nomogram for predicting survival in advanced non-small cell lung cancer receiving anti-PD-1 plus chemotherapy with or without antiangiogenic therapy.
This study aimed to develop and validate a novel nomogram to predict survival in advanced non-small cell lung cancer (NSCLC) receiving programmed cell death 1 (PD-1) inhibitor plus chemotherapy with or without antiangiogenic therapy.
A total of 271 patients with advanced NSCLC who received anti-PD-1 plus chemotherapy with or without antiangiogenic therapy were enrolled in our center and randomized into the training cohort (n = 133) and the internal validation cohort (n = 138). Forty-five patients from another center were included as an independent external validation cohort. The nomogram was created based on the multivariate Cox regression analysis to predict overall survival (OS) and progression-free survival (PFS). The performance of the nomogram was assessed using the concordance index (C-index), the time-dependent area under the receiver operating (ROC) curves (AUCs), calibration curves, and decision curve analysis (DCA).
Four factors significantly associated with OS were utilized to create a nomogram to predict OS: Eastern Cooperative Oncology Group performance status (ECOG PS), programmed cell death-ligand 1 (PD-L1) expression, chemotherapy cycle, and pretreatment lactate dehydrogenase-albumin ratio (LAR). Six variables significantly associated with PFS were incorporated into the development of a nomogram for predicting PFS: ECOG PS, histology, PD-L1 expression, chemotherapy cycle, pretreatment platelet to lymphocyte (PLR), and pretreatment LAR. The C-indexes of the nomogram for predicting OS and PFS were 0.750 and 0.747, respectively. The AUCs for predicting the 6-month, 12-month, and 18-month OS and PFS were 0.847, 0.791, and 0.776 and 0.810, 0.787, and 0.861, respectively. The calibration curves demonstrated a good agreement between predictions and actual observations. The DCA curves indicated that the nomograms had good net benefits. Furthermore, the nomogram model was well-validated in the internal and external cohorts.
The novel nomogram for predicting the prognosis of advanced NSCLC receiving anti-PD-1 plus chemotherapy with or without antiangiogenic therapy may help guide clinical treatment decisions.
Wu Y
,Lv C
,Lin M
,Hong Y
,Du B
,Yao N
,Zhu Y
,Ji X
,Li J
,Lai J
... -
《Frontiers in Immunology》