Radiograph-based rheumatoid arthritis diagnosis via convolutional neural network.
摘要:
Rheumatoid arthritis (RA) is a severe and common autoimmune disease. Conventional diagnostic methods are often subjective, error-prone, and repetitive works. There is an urgent need for a method to detect RA accurately. Therefore, this study aims to develop an automatic diagnostic system based on deep learning for recognizing and staging RA from radiographs to assist physicians in diagnosing RA quickly and accurately. We develop a CNN-based fully automated RA diagnostic model, exploring five popular CNN architectures on two clinical applications. The model is trained on a radiograph dataset containing 240 hand radiographs, of which 39 are normal and 201 are RA with five stages. For evaluation, we use 104 hand radiographs, of which 13 are normal and 91 RA with five stages. The CNN model achieves good performance in RA diagnosis based on hand radiographs. For the RA recognition, all models achieve an AUC above 90% with a sensitivity over 98%. In particular, the AUC of the GoogLeNet-based model is 97.80%, and the sensitivity is 100.0%. For the RA staging, all models achieve over 77% AUC with a sensitivity over 80%. Specifically, the VGG16-based model achieves 83.36% AUC with 92.67% sensitivity. The presented GoogLeNet-based model and VGG16-based model have the best AUC and sensitivity for RA recognition and staging, respectively. The experimental results demonstrate the feasibility and applicability of CNN in radiograph-based RA diagnosis. Therefore, this model has important clinical significance, especially for resource-limited areas and inexperienced physicians.
收起
展开
DOI:
10.1186/s12880-024-01362-w
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(98)
参考文献(25)
引证文献(0)
来源期刊
影响因子:2.792
JCR分区: 暂无
中科院分区:暂无