-
Predictive value of MRI-based deep learning model for lymphovascular invasion status in node-negative invasive breast cancer.
To retrospectively assess the effectiveness of deep learning (DL) model, based on breast magnetic resonance imaging (MRI), in predicting preoperative lymphovascular invasion (LVI) status in patients diagnosed with invasive breast cancer who have negative axillary lymph nodes (LNs). Data was gathered from 280 patients, including 148 with LVI-positive and 141 with LVI-negative lesions. These patients had undergone preoperative breast MRI and were histopathologically confirmed to have invasive breast cancer without axillary LN metastasis. The cohort was randomly split into training and validation groups in a 7:3 ratio. Radiomics features for each lesion were extracted from the first post-contrast dynamic contrast-enhanced (DCE)-MRI. The Least Absolute Shrinkage and Selection Operator (LASSO) regression method and logistic regression analyses were employed to identify significant radiomic features and clinicoradiological variables. These models were established using four machine learning (ML) algorithms and one DL algorithm. The predictive performance of the models (radiomics, clinicoradiological, and combination) was assessed through discrimination and compared using the DeLong test. Four clinicoradiological parameters and 10 radiomic features were selected by LASSO for model development. The Multilayer Perceptron (MLP) model, constructed using both radiomic and clinicoradiological features, demonstrated excellent performance in predicting LVI, achieving a high area under the curve (AUC) of 0.835 for validation. The DL model (MLP-radiomic) achieved the highest accuracy (AUC = 0.896), followed by DL model (MLP-combination) with an AUC of 0.835. Both DL models were significantly superior to the ML model (RF-clinical) with an AUC of 0.720. The DL model (MLP), which integrates radiomic features with clinicoradiological information, effectively aids in the preoperative determination of LVI status in patients with invasive breast cancer and negative axillary LNs. This is beneficial for making informed clinical decisions.
Liang R
,Li F
,Yao J
,Tong F
,Hua M
,Liu J
,Shi C
,Sui L
,Lu H
... -
《Scientific Reports》
-
Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
Lymphovascular invasion (LVI) status facilitates the selection of optimal therapeutic strategy for breast cancer patients, but in clinical practice LVI status is determined in pathological specimens after resection.
To explore the use of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI)-based radiomics for preoperative prediction of LVI in invasive breast cancer.
Prospective.
Ninety training cohort patients (22 LVI-positive and 68 LVI-negative) and 59 validation cohort patients (22 LVI-positive and 37 LVI-negative) were enrolled.
1.5 T and 3.0 T, T1 -weighted DCE-MRI.
Axillary lymph node (ALN) status for each patient was evaluated based on MR images (defined as MRI ALN status), and DCE semiquantitative parameters of lesions were calculated. Radiomic features were extracted from the first postcontrast DCE-MRI. A radiomics signature was constructed in the training cohort with 10-fold cross-validation. The independent risk factors for LVI were identified and prediction models for LVI were developed. Their prediction performances and clinical usefulness were evaluated in the validation cohort.
Mann-Whitney U-test, chi-square test, kappa statistics, least absolute shrinkage and selection operator (LASSO) regression, logistic regression, receiver operating characteristic (ROC) analysis, DeLong test, and decision curve analysis (DCA).
Two radiomic features were selected to construct the radiomics signature. MRI ALN status (odds ratio, 10.452; P < 0.001) and the radiomics signature (odds ratio, 2.895; P = 0.031) were identified as independent risk factors for LVI. The value of the area under the curve (AUC) for a model combining both (0.763) was higher than that for MRI ALN status alone (0.665; P = 0.029) and similar to that for the radiomics signature (0.752; P = 0.857). DCA showed that the combined model added more net benefit than either feature alone.
The DCE-MRI-based radiomics signature in combination with MRI ALN status was effective in predicting the LVI status of patients with invasive breast cancer before surgery.
1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:847-857.
Liu Z
,Feng B
,Li C
,Chen Y
,Chen Q
,Li X
,Guan J
,Chen X
,Cui E
,Li R
,Li Z
,Long W
... -
《-》
-
Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast-Enhanced MRI.
Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non-invasive assessment method.
To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI-MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast-enhanced MRI (DCE-MRI).
Cross-sectional retrospective cohort study.
The study included 206 BC patients, with 136 in the training set [97 LVI(-) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(-) and 18 LVI(+) cases; median age: 48 years].
1.5 T/T1-weighted images, fat-suppressed T2-weighted images, diffusion-weighted imaging (DWI), and DCE-MRI.
The MRI-MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE-MRI datasets, specifically the first and second post-contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI-MF, Radiomics, and DL approaches.
Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis.
Rim sign and peritumoral edema features were used to develop the MRI-MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI-MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI-MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI-MF (AUC = 0.796), DL + MRI-MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826).
The joint model incorporating MRI-MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery.
4 TECHNICAL EFFICACY: Stage 2.
Yang X
,Fan X
,Lin S
,Zhou Y
,Liu H
,Wang X
,Zuo Z
,Zeng Y
... -
《-》
-
A comprehensive approach for evaluating lymphovascular invasion in invasive breast cancer: Leveraging multimodal MRI findings, radiomics, and deep learning analysis of intra- and peritumoral regions.
To evaluate lymphovascular invasion (LVI) in breast cancer by comparing the diagnostic performance of preoperative multimodal magnetic resonance imaging (MRI)-based radiomics and deep-learning (DL) models.
This retrospective study included 262 patients with breast cancer-183 in the training cohort (144 LVI-negative and 39 LVI-positive cases) and 79 in the validation cohort (59 LVI-negative and 20 LVI-positive cases). Radiomics features were extracted from the intra- and peritumoral breast regions using multimodal MRI to generate gross tumor volume (GTV)_radiomics and gross tumor volume plus peritumoral volume (GPTV)_radiomics. Subsequently, DL models (GTV_DL and GPTV_DL) were constructed based on the GTV and GPTV to determine the LVI status. Finally, the most effective radiomics and DL models were integrated with imaging findings to establish a hybrid model, which was converted into a nomogram to quantify the LVI risk.
The diagnostic efficiency of GPTV_DL was superior to that of GTV_DL (areas under the curve [AUCs], 0.771 and 0.720, respectively). Similarly, GPTV_radiomics outperformed GTV_radiomics (AUC, 0.685 and 0.636, respectively). Univariate and multivariate logistic regression analyses revealed an association between imaging findings, such as MRI-axillary lymph nodes and peritumoral edema (AUC, 0.665). The hybrid model achieved the highest accuracy by combining GPTV_DL, GPTV_radiomics, and imaging findings (AUC, 0.872).
The diagnostic efficiency of the GPTV-derived radiomics and DL models surpassed that of the GTV-derived models. Furthermore, the hybrid model, which incorporated GPTV_DL, GPTV_radiomics, and imaging findings, demonstrated the effective determination of LVI status prior to surgery in patients with breast cancer.
Liu W
,Li L
,Deng J
,Li W
... -
《-》
-
Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
in current clinical practice, the standard evaluation for axillary lymph node (ALN) status in breast cancer has a low efficiency and is based on an invasive procedure that causes operative-associated complications in many patients. Therefore, we aimed to use machine learning techniques to develop an efficient preoperative magnetic resonance imaging (MRI) radiomics evaluation approach of ALN status and explore the association between radiomics and the tumor microenvironment in patients with early-stage invasive breast cancer.
in this retrospective multicenter study, three independent cohorts of patients with breast cancer (n = 1,088) were used to develop and validate signatures predictive of ALN status. After applying the machine learning random forest algorithm to select the key preoperative MRI radiomic features, we used ALN and tumor radiomic features to develop the ALN-tumor radiomic signature for ALN status prediction by the support vector machine algorithm in 803 patients with breast cancer from Sun Yat-sen Memorial Hospital and Sun Yat-sen University Cancer Center (training cohort). By combining ALN and tumor radiomic features with corresponding clinicopathologic information, the multiomic signature was constructed in the training cohort. Next, the external validation cohort (n = 179) of patients from Shunde Hospital of Southern Medical University and Tungwah Hospital of Sun Yat-Sen University, and the prospective-retrospective validation cohort (n = 106) of patients treated with neoadjuvant chemotherapy in prospective phase 3 trials [NCT01503905], were included to evaluate the predictive value of the two signatures, and their predictive performance was assessed by the area under operating characteristic curve (AUC). This study was registered with ClinicalTrials.gov, number NCT04003558.
the ALN-tumor radiomic signature for ALN status prediction comprising ALN and tumor radiomic features showed a high prediction quality with AUC of 0·88 in the training cohort, 0·87 in the external validation cohort, and 0·87 in the prospective-retrospective validation cohort. The multiomic signature incorporating tumor and lymph node MRI radiomics, clinical and pathologic characteristics, and molecular subtypes achieved better performance for ALN status prediction with AUCs of 0·90, 0·91, and 0·93 in the training cohort, the external validation cohort, and the prospective-retrospective validation cohort, respectively. Among patients who underwent neoadjuvant chemotherapy in the prospective-retrospective validation cohort, there were significant differences in the key radiomic features before and after neoadjuvant chemotherapy, especially in the gray-level dependence matrix features. Furthermore, there was an association between MRI radiomics and tumor microenvironment features including immune cells, long non-coding RNAs, and types of methylated sites. Interpretation this study presented a multiomic signature that could be preoperatively and conveniently used for identifying patients with ALN metastasis in early-stage invasive breast cancer. The multiomic signature exhibited powerful predictive ability and showed the prospect of extended application to tailor surgical management. Besides, significant changes in key radiomic features after neoadjuvant chemotherapy may be explained by changes in the tumor microenvironment, and the association between MRI radiomic features and tumor microenvironment features may reveal the potential biological underpinning of MRI radiomics.
No funding.
Yu Y
,He Z
,Ouyang J
,Tan Y
,Chen Y
,Gu Y
,Mao L
,Ren W
,Wang J
,Lin L
,Wu Z
,Liu J
,Ou Q
,Hu Q
,Li A
,Chen K
,Li C
,Lu N
,Li X
,Su F
,Liu Q
,Xie C
,Yao H
... -
《EBioMedicine》