Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways.
Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats.
Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well.
PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response.
Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
El-Shoura EAM
,Abdelzaher LA
,Ahmed AAN
,Abdel-Wahab BA
,Sharkawi SMZ
,Mohamed SA
,Salem EA
... -
《-》
Rutin Attenuates Vancomycin-Induced Nephrotoxicity by Ameliorating Oxidative Stress, Apoptosis, and Inflammation in Rats.
Nephrotoxicity is the major limiting factor for the clinical use of vancomycin (VCM) for treatment of serious infections caused by multiresistant Gram-positive bacteria. This study investigated the renal protective activity of rutin in a rat model of VCM-induced kidney injury in male Wistar rats. VCM administered intraperitoneally at 200 mg/kg twice daily for 7 successive days resulted in significant elevation of blood urea nitrogen and creatinine, as well as urinary N-acetyl-β-D-glucosaminidase. Coadministration of VCM with oral rutin at 150 mg/kg significantly reduced these markers of kidney damage. Rutin also significantly attenuated VCM-induced oxidative stress, inflammatory cell infiltration, apoptosis, and decreased interleukin-1β and tumor necrosis factor alpha levels (all P < 0.05 or 0.01) in kidneys. Renal recovery from VCM injury was achieved by rutin through increases in Nrf2 and HO-1 and a decrease in NF-κB expression. Our results demonstrated a protective effect of rutin on VCM-induced kidney injury through suppression of oxidative stress, apoptosis, and downregulation of the inflammatory response. This study highlights a role for oral rutin as an effective intervention to ameliorate nephrotoxicity in patients undergoing VCM therapy.
Qu S
,Dai C
,Lang F
,Hu L
,Tang Q
,Wang H
,Zhang Y
,Hao Z
... -
《-》
Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Hassanein EHM
,Abdel-Reheim MA
,Althagafy HS
,Hemeda MS
,Gad RA
,Abdel-Sattar AR
... -
《-》
Renal Protective Effect of Umbelliferone on Acute Kidney Injury in Rats via Alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Acute kidney injury (AKI), formerly known as acute renal failure, refers to a sudden and often reversible decline in kidney function. Inflammatory reaction and oxidative stress play a crucial role in the expansion of renal disease. In this experimental study, we scrutinized the renal protective effect of umbelliferone against gentamicin induced renal injury in the rats and explore the mechanism. Wistar rats were used in this study and Gentamicin was used for the induction the AKI in the rats and rats were received the oral administration of umbelliferone. The body weight, organ weight, renal, oxidative stress, cytokines, inflammatory parameters were estimated. The mRNA expression caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2 were estimated. Umbelliferone remarkably improved the body weight and altered the absolute and relative weight of hepatic and renal tissue. Umbelliferone significantly suppressed the level of BUN, Scr, magnesium, calcium, phosphorus, sodium, and potassium along with altered the level of oxidative stress parameters like CAT, SOD, GSH, LPO, and GPx. Umbelliferone altered the level of cytokines viz., TNF-α, Il-1β, IL-6, IL-10; inflammatory parameters like PGE2, COX-2, TGF-β, NF-κB, respectively. Umbelliferone significantly altered the mRNA expression of caspase-3, Bax, Bcl-2, TNF-α, IL-1β, IL-6, IL-10, HO-1, and Nrf2. The result showed the renal protective effect of umbelliferone against gentamycin induced renal disease via alteration of HO-1/Nrf2 and NF-κB Signaling Pathway.
Yan R
,Yang H
,Jiang X
,Lai X
... -
《-》