Reno-protective effect of nicorandil and pentoxifylline against potassium dichromate-induced acute renal injury via modulation p38MAPK/Nrf2/HO-1 and Notch1/TLR4/NF-κB signaling pathways.
摘要:
Occupational and environmental exposure to chromium compounds such as potassium dichromate (PDC) (K2Cr2O7) has emerged as a potential aetiologic cause for renal disease through apoptotic, and inflammatory reactions. The known potent antioxidants such as nicorandil (NIC) and/or pentoxifylline (PTX) were studied for their possible nephroprotective effect in PDC-treated rats. Forty male Wistar rats were divided into five groups; control, PDC group, NIC+PDC, PTX+PDC group, and combination+PDC group. Nephrotoxicity was evaluated histopathologically and biochemically. Invasive blood pressure, renal function parameters urea, creatinine, uric acid and albumin, glomerular filtration rate markers Cys-C, Kim-1 and NGAL, inflammatory markers IL-1β, IL-6, TNF-α, TGF-β, COX-II, p38MAPK, NF-κB and TLR4, oxidative stress SOD, GSH, MDA, MPO, HO-1 and Nrf2 and apoptotic mediators Notch1 and PCNA were evaluated. Besides, renal cortical histopathology was assayed as well. PDC led to a considerable increase in indicators for kidney injury, renal function parameters, invasive blood pressure, oxidative stress, and inflammatory markers. They were markedly reduced by coadministration of PDC with either/or NIC and PTX. The NIC and PTX combination regimen showed a more significant improvement than either medication used alone. Our results demonstrated the nephroprotective effect of NIC, PTX, and their combined regimen on PDC-induced kidney injury through suppression of oxidative stress, apoptosis, and inflammatory response. Renal recovery from PDC injury was achieved through enhanced MAPK/Nrf2/HO-1 and suppressed Notch1/TLR4/NF-κB signaling pathways. This study highlights the role of NIC and PTX as effective interventions to ameliorate nephrotoxicity in patients undergoing PDC toxicity.
收起
展开
DOI:
10.1016/j.jtemb.2024.127474
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(120)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无