Immune- and metabolism-related gene signature analysis uncovers the prognostic and immune microenvironments of hepatocellular carcinoma.

来自 PUBMED

作者:

Gu YMa EJiang SShan ZXia GMa RFu JWang Z

展开

摘要:

Metabolic reprogramming is an emerging hallmark that influences the tumour microenvironment (TME) by regulating the behavior of cancer cells and immune cells. The relationship between metabolism and immunity remains elusive. The purpose of this study was to explore the predictive value of immune- and metabolism-related genes in hepatocellular carcinoma (HCC) and their intricate interplay with TME. We established the immune- and metabolism-related signature (IMRPS) based on the LIHC cohort from The Cancer Genome Atlas (TCGA) dataset. Kaplan-Meier analysis, receiver operating characteristic (ROC) curve analysis and Cox regression analysis confirmed the prognostic value of IMRPS. We investigated differences in immune cell infiltration, clinical features, and therapeutic response between risk groups. The quantitative real-time PCR (qPCR) was used to confirm the expression of signature genes. Immunohistochemical staining was performed to evaluate immune infiltration features in HCC tissue samples. We conducted cell experiments including gene knockout, cell counting kit-8 (CCK-8), and flow cytometry to explore the role of the IMRPS key gene UCK2 in HCC. RNA-seq was used to further investigate the potential underlying mechanism involved. The IMRPS, composed of four genes, SMS, UCK2, PFKFB4 and MAPT, exhibited significant correlations with survival, immune cell infiltration, clinical features, immune checkpoints and therapeutic response. The IMRPS was shown to be an excellent predictor of HCC prognosis. It could stratify patients appropriately and characterize the TME accurately. The high-risk HCC group exhibited an immunosuppressive microenvironment with abundant M2-like macrophage infiltration, which was confirmed by the immunohistochemistry results. The results of qPCR revealed that the expression of signature genes in 20 HCC tissues was significantly greater than that in adjacent normal tissues. After the key gene UCK2 was knocked out, the proliferation of the Huh7 cell line was significantly inhibited, and monocyte-derived macrophages polarized towards an M1-like phenotype in the coculture system. RNA-seq and GSEA suggested that the phenotypes were closely related to the negative regulation of growth and regulation of macrophage chemotaxis. This study established a new IMRS for the accurate prediction of patient prognosis and the TME, which is also helpful for identifying new targets for the treatment of HCC.

收起

展开

DOI:

10.1007/s00432-024-05849-5

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(301)

参考文献(41)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读