-
Histamine-related genes participate in the establishment of an immunosuppressive microenvironment and impact the immunotherapy response in hepatocellular carcinoma.
Chronic inflammation is pivotal in the pathogenesis of hepatocellular carcinoma (HCC). Histamine is a biologically active substance that amplifies the inflammatory and immune response and serves as a neurotransmitter. However, knowledge of histamine's role in HCC and its effects on immunotherapy remains lacking. We focused on histamine-related genes to investigate their potential role in HCC. The RNA-seq data and clinical information regarding HCC were obtained from The Cancer Genome Atlas (TCGA). After identifying the differentially expressed genes, we constructed a signature using the univariate Cox proportional hazard regression and least absolute shrinkage and selection operator (LASSO) analyses. The signature's predictive performance was evaluated using a receiver operating characteristic curve (ROC) analysis. Furthermore, drug sensitivity, immunotherapy effects, and enrichment analyses were conducted. Histamine-related gene expression in HCC was confirmed using quantitative real-time polymerase chain reaction (qRT-PCR). A histamine-related gene prognostic signature (HRGPS) was developed in TCGA. Time-dependent ROC and Kaplan-Meier survival analyses demonstrated the signature's strong predictive power. Importantly, patients in high-risk groups exhibited a higher frequency of TP53 mutations, elevated immune checkpoint-related gene expression, and increased infiltration of immunosuppressive cells-indicating a potentially favorable response to immunotherapy. In addition, drug sensitivity analysis revealed that the signature could effectively predict chemotherapy efficacy and sensitivity. qRT-PCR results validated histamine-related gene overexpression in HCC. Our findings demonstrate that inhibiting histamine-related genes and signaling pathways can impact the therapeutic effect of anti-PD-1/PD-L1. The precise predictive ability of our signature in determining the response to different therapeutic options highlights its potential clinical significance.
Zhang X
,Zheng P
,Meng B
,Zhuang H
,Lu B
,Yao J
,Han F
,Luo S
... -
《-》
-
Prognosis and immune landscape of bladder cancer can be predicted using a novel miRNA signature associated with cuproptosis.
Bladder cancer is characterized by a high recurrence rate and mortality, posing a significant challenge to clinical management. Recently, cuproptosis, a novel form of regulated cell death, has been identified as a potential target for therapeutic intervention in various diseases. The contribution of cuproptosis-related microRNAs (miRNAs) in bladder cancer pathogenesis, however, remains largely unexplored. Therefore, the current study aims to construct a miRNA signature related to cuproptosis for predicting the prognosis and facilitating personalized therapeutic strategies in bladder cancer patients.
In this study, we retrieved transcriptomic data and clinical information pertaining to bladder cancer from publicly available databases, including the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We identified a set of 19 cuproptosis-related genes through a comprehensive review of relevant literature. Using multivariate Cox regression and LASSO analysis, we constructed a cuproptosis-related miRNA prognostic signature. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were used to validate the accuracy of prediction. Additionally, we developed a nomogram incorporating clinical characteristics and the miRNA signature to further assess its prognostic value. We evaluated the tumor microenvironment (TME) of every patient using immune ESTIMATE, CIBERSORT, and ssGSEA algorithms. We also investigated the differences in tumor mutation burden (TMB) and drug sensitivity between two groups. Finally, we validated the prognostic value of this miRNA signature using the OncomiR dataset.
We developed a panel of eight cuproptosis-associated miRNAs to serve as a prognostic signature. The predictive validity of this signature was determined using Kaplan-Meier and ROC curves, and was found to be acceptable in both the TCGA training, test and total dataset. The prognostic value of this signature was confirmed by univariate and multivariate Cox regression analysis, indicating its applicability as a prognostic factor. The immune cell infiltration was significantly associated with an immunosuppressive phenotype of TME in the high-risk group of patients; meanwhile, patients in the high-risk group had a lower TMB resulted in shorter survival. Notably, higher estimate scores and IC50 value for chemotherapy drugs were observed in the high-risk group, indicating poor response to immune therapy and chemotherapy.
Zhang Z
,Liu F
,Yu Y
,Xie F
,Zhu T
... -
《PeerJ》
-
Identifying the prognostic significance of mitophagy-associated genes in multiple myeloma: a novel risk model construction.
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy that is currently incurable. Individualized therapeutic approaches based on accurate risk assessment are essential for improving the prognosis of MM patients. Nevertheless, current prognostic models for MM exhibit certain limitations and prognosis heterogeneity still an unresolved issue. Recent studies have highlighted the pivotal involvement of mitochondrial autophagy in the development and drug sensitivity of MM. This study seeks to conduct an integrative analysis of the prognostic significance and immune microenvironment of mitophagy-related signature in MM, with the aim of constructing a novel predictive risk model. GSE4581 and GSE47552 datasets were acquired from the Gene Expression Omnibus database. MM-differentially expressed genes (DEGs) were identified by limma between MM samples and normal samples in GSE47552. Mitophagy key module genes were obtained by weighted gene co-expression network analysis in the Cancer Genome Atlas (TCGA)-MM dataset. Mitophagy DEGs were identified by the overlap genes between MM-DEGs and mitophagy key module genes. Prognostic genes were selected through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, and a risk model was subsequently constructed based on these prognostic genes. Subsequently, the MM samples were stratified into high- and low-risk groups based on their median risk scores. The validity of the risk model was further evaluated using the GSE4581 dataset. Moreover, a nomogram was developed using the independent prognostic factors identified from the risk score and various clinical indicators. Additionally, analyses were conducted on immune infiltration, immune scores, immune checkpoint, and chemotherapy drug sensitivity. The 17 mitophagy DEGs were obtained by intersection of 803 MM-DEGs and 1084 mitophagy key module genes. Five prognostic genes (CDC6, PRIM1, SNRPB, TOP2A, and ZNF486) were selected via LASSO and univariate cox regression analyses. The predictive performance of the risk model, which was constructed based on the five prognostic genes, demonstrated favorable results in both TCGA-MM and GSE4581 datasets as indicated by the receiver operating characteristic (ROC) curves. In addition, calibration curve, ROC curve, and decision curve analysis curve corroborated that the nomogram exhibited superior predictive accuracy for MM. Furthermore, immune analysis results indicated a significant difference in stromal scores of two risk groups categorized on median risk scores. And four immune checkpoints (CD274, CTLA4, LAG3, and PDCD1LG2) showed significant differences in different risk groups. The analysis of chemotherapy drug sensitivity revealed that etoposide and doxorubicin, which target TOP2A, exhibited superior treatment outcomes in the high-risk group. A novel prognostic model for MM was developed and validated, demonstrating significant potential in predicting patient outcomes and providing valuable guidance for personalized immunotherapy counseling.
Min R
,Hu Z
,Zhou Y
《-》
-
A novel platelets-related gene signature for predicting prognosis, immune features and drug sensitivity in gastric cancer.
Platelets can dynamically regulate tumor development and progression. Nevertheless, research on the predictive value and specific roles of platelets in gastric cancer (GC) is limited. This research aims to establish a predictive platelets-related gene signature in GC with prognostic and therapeutic implications.
We downloaded the transcriptome data and clinical materials of GC patients (n=378) from The Cancer Genome Atlas (TCGA) database. Prognostic platelets-related genes screened by univariate Cox regression were included in Least Absolute Shrinkage and Selection Operator (LASSO) analysis to construct a risk model. Kaplan-Meier curves and receiver operating characteristic curves (ROCs) were performed in the TCGA cohort and three independent validation cohorts. A nomogram integrating the risk score and clinicopathological features was constructed. Functional enrichment and tumor microenvironment (TME) analyses were performed. Drug sensitivity prediction was conducted through The Cancer Therapeutics Response Portal (CTRP) database. Finally, the expression of ten signature genes was validated by quantitative real-time PCR (qRT-PCR).
A ten-gene (SERPINE1, ANXA5, DGKQ, PTPN6, F5, DGKB, PCDH7, GNG11, APOA1, and TF) predictive risk model was finally constructed. Patients were categorized as high- or low-risk using median risk score as the threshold. The area under the ROC curve (AUC) values for the 1-, 2-, and 3-year overall survival (OS) in the training cohort were 0.670, 0.695, and 0.707, respectively. Survival analysis showed a better OS in low-risk patients in the training and validation cohorts. The AUCs of the nomogram for predicting 1-, 2-, and 3-year OS were 0.708, 0.763, and 0.742, respectively. TME analyses revealed a higher M2 macrophage infiltration and an immunosuppressive TME in the high-risk group. Furthermore, High-risk patients tended to be more sensitive to thalidomide, MK-0752, and BRD-K17060750.
The novel platelets-related genes signature we identified could be used for prognosis and treatment prediction in GC.
Li Q
,Zhang C
,Ren Y
,Qiao L
,Xu S
,Li K
,Liu Y
... -
《-》
-
Pyroptosis-related long-noncoding RNA signature predicting survival and immunotherapy efficacy in patients with lung squamous cell carcinoma.
Pyroptosis-related long-noncoding RNAs (PRlncRNAs) play an important role in cancer progression. However, their role in lung squamous cell carcinoma (LUSC) is unclear. A risk model was constructed using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis based on RNA sequencing data from The Cancer Genome Atlas database. The LUSC cohort was divided into high- and low-risk groups based on the median risk score. For the prognostic value of the model, the Kaplan-Meier analysis, log-rank test, and Cox regression analysis were performed. A nomogram was constructed to predict the prognosis of patients, using a risk score and clinical parameters such as age, sex, clinical stage, and tumor node metastasis classification (TNM) stage. Afterwards, six common algorithms were employed to assess the invasion of immune cells. The Gene Set Enrichment Analysis (GSEA) was conducted to identify differences between patients at high and low risk. Furthermore, the pRRophetic package was employed to forecast the half-maximal inhibitory doses of prevalent chemotherapeutic drugs, while the tumor immune dysfunction and exclusion score was computed to anticipate the response to immunotherapy. The expression levels of the seven PRlncRNAs were examined in both LUSC and normal lung epithelial cell lines using RT-qPCR. Proliferation, migration, and invasion assays were also carried out to investigate the role of MIR193BHG in LUSC cells. Patients in the low-risk group showed prolonged survival in the total cohort or subgroup analysis. The Cox regression analysis showed that the risk model could act as an independent prognostic factor for patients with LUSC. The results of GSEA analysis revealed that the high-risk group showed enrichment of cytokine pathways, Janus tyrosine kinase/signal transducer and activator of the transcription signalling pathway, and Toll-like receptor pathway. Conversely, the low-risk group showed enrichment of several gene repair pathways. Furthermore, the risk score was positively correlated with immune cell infiltration. Moreover, patients in the high-risk category showed reduced responsiveness to conventional chemotherapeutic medications and immunotherapy. The majority of the long noncoding RNAs in the risk model were confirmed to be overexpressed in LUSC cell lines compared to normal lung epithelial cell lines by in vitro tests. Further studies have shown that downregulating the expression of MIR193BHG may inhibit the growth, movement, and infiltration capabilities of LUSC cells, whereas increasing the expression of MIR193BHG could enhance these malignant tendencies. This study found that PRlncRNAs were linked to the prognosis of LUSC patients. The risk model, evaluated across various clinical parameters and treatment modalities, shows potential as a future reference for clinical applications.
Zhan X
,Li J
,Ding Y
,Zhou F
,Zeng R
,Lei L
,Zhang Y
,Feng A
,Qu Y
,Yang Z
... -
《-》