Treatment plan complexity quantification for predicting gamma passing rates in patient-specific quality assurance for stereotactic volumetric modulated arc therapy.

来自 PUBMED

作者:

Xue XLuan SDing YLi XLi DWang JMa CJiang MWei WWang X

展开

摘要:

To investigate the beam complexity of stereotactic Volumetric Modulated Arc Therapy (VMAT) plans quantitively and predict gamma passing rates (GPRs) using machine learning. The entire dataset is exclusively made of stereotactic VMAT plans (301 plans with 594 beams) from Varian Edge LINAC. The GPRs were analyzed using Varian's portal dosimetry with 2%/2 mm criteria. A total of 27 metrics were calculated to investigate the correlation between metrics and GPRs. Random forest and gradient boosting models were developed and trained to predict the GPRs based on the extracted complexity features. The threshold values of complexity metric were obtained to predict a given beam to pass or fail from ROC curve analysis. The three moderately significant values of Spearman's rank correlation to GPRs were 0.508 (p < 0.001), 0.445 (p < 0.001), and -0.416 (p < 0.001) for proposed metric LAAM, the ratio of the average aperture area over jaw area (AAJA) and index of modulation, respectively. The random forest method achieved 98.74% prediction accuracy with mean absolute error of 1.23% using five-fold cross-validation, and 98.71% with 1.25% for gradient boosting regressor method, respectively. LAAM, leaf travelling distance (LT), AAJA, LT modulation complexity score (LTMCS) and index of modulation, were the top five most important complexity features. The LAAM metric showed the best performance with AUC value of 0.801, and threshold value of 0.365. The calculated metrics were effective in quantifying the complexity of stereotactic VMAT plans. We have demonstrated that the GPRs could be accurately predicted using machine learning methods based on extracted complexity metrics. The quantification of complexity and machine learning methods have the potential to improve stereotactic treatment planning and identify the failure of QA results promptly.

收起

展开

DOI:

10.1002/acm2.14432

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(30)

引证文献(1)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读