Prediction of patient-specific quality assurance for volumetric modulated arc therapy using radiomics-based machine learning with dose distribution.

来自 PUBMED

摘要:

We sought to develop machine learning models to predict the results of patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), which were represented by several dose-evaluation metrics-including the gamma passing rates (GPRs)-and criteria based on the radiomic features of 3D dose distribution in a phantom. A total of 4,250 radiomic features of 3D dose distribution in a cylindrical dummy phantom for 140 arcs from 106 clinical VMAT plans were extracted. We obtained the following dose-evaluation metrics: GPRs with global and local normalization, the dose difference (DD) in 1% and 2% passing rates (DD1% and DD2%) for 10% and 50% dose threshold, and the distance-to-agreement in 1-mm and 2-mm passing rates (DTA1 mm and DTA2 mm) for 0.5%/mm and 1.0%.mm dose gradient threshold determined by measurement using a diode array in patient-specific QA. The machine learning regression models for predicting the values of the dose-evaluation metrics using the radiomic features were developed based on the elastic net (EN) and extra trees (ET) models. The feature selection and tuning of hyperparameters were performed with nested cross-validation in which four-fold cross-validation is used within the inner loop, and the performance of each model was evaluated in terms of the root mean square error (RMSE), the mean absolute error (MAE), and Spearman's rank correlation coefficient. The RMSE and MAE for the developed machine learning models ranged from <1% to nearly <10% depending on the dose-evaluation metric, the criteria, and dose and dose gradient thresholds used for both machine learning models. It was advantageous to focus on high dose region for predicating global GPR, DDs, and DTAs. For certain metrics and criteria, it was possible to create models applicable for patients' heterogeneity by training only with dose distributions in phantom. The developed machine learning models showed high performance for predicting dose-evaluation metrics especially for high dose region depending on the metric and criteria. Our results demonstrate that the radiomic features of dose distribution can be considered good indicators of the plan complexity and useful in predicting measured dose evaluation metrics.

收起

展开

DOI:

10.1002/acm2.14215

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(139)

参考文献(43)

引证文献(1)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读