In-depth analysis of ChatGPT's performance based on specific signaling words and phrases in the question stem of 2377 USMLE step 1 style questions.

来自 PUBMED

作者:

Knoedler LKnoedler SHoch CCPrantl LFrank KSoiderer LCotofana SDorafshar AHSchenck TVollbach FSofo GAlfertshofer M

展开

摘要:

ChatGPT has garnered attention as a multifaceted AI chatbot with potential applications in medicine. Despite intriguing preliminary findings in areas such as clinical management and patient education, there remains a substantial knowledge gap in comprehensively understanding the chances and limitations of ChatGPT's capabilities, especially in medical test-taking and education. A total of n = 2,729 USMLE Step 1 practice questions were extracted from the Amboss question bank. After excluding 352 image-based questions, a total of 2,377 text-based questions were further categorized and entered manually into ChatGPT, and its responses were recorded. ChatGPT's overall performance was analyzed based on question difficulty, category, and content with regards to specific signal words and phrases. ChatGPT achieved an overall accuracy rate of 55.8% in a total number of n = 2,377 USMLE Step 1 preparation questions obtained from the Amboss online question bank. It demonstrated a significant inverse correlation between question difficulty and performance with rs = -0.306; p < 0.001, maintaining comparable accuracy to the human user peer group across different levels of question difficulty. Notably, ChatGPT outperformed in serology-related questions (61.1% vs. 53.8%; p = 0.005) but struggled with ECG-related content (42.9% vs. 55.6%; p = 0.021). ChatGPT achieved statistically significant worse performances in pathophysiology-related question stems. (Signal phrase = "what is the most likely/probable cause"). ChatGPT performed consistent across various question categories and difficulty levels. These findings emphasize the need for further investigations to explore the potential and limitations of ChatGPT in medical examination and education.

收起

展开

DOI:

10.1038/s41598-024-63997-7

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(178)

参考文献(17)

引证文献(2)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读