Real-life effectiveness of sacubitril/valsartan in older Belgians with heart failure, reduced ejection fraction and most severe symptoms.

来自 PUBMED

作者:

Maury EBelmans ABogaerts KVancayzeele SJansen M

展开

摘要:

We assessed the real-world effectiveness of sacubitril/valsartan in patients with chronic heart failure (HF) and reduced ejection fraction (HFrEF) with an emphasis on those with older age (≥ 75 years) or with New York Heart Association (NYHA) class IV, for whom greater uncertainty existed regarding clinical outcomes. We conducted a retrospective cohort study based on patient-level linkage of electronic healthcare datasets. Data from all adults with HFrEF in Belgium receiving a prescription for sacubitril/valsartan between 01-November-2016 and 31-December-2018 were collected, with a follow-up of > 6 years. The total study population comprised 5446 patients, older than the PARADIGM-HF trial participants, and with higher NYHA class (all P < 0.0001). NYHA class improved following sacubitril/valsartan initiation (P < 0.0001 baseline vs. reassessment). Most concomitant medications were reduced. Remarkably, the risk of hospitalization for a cardiovascular reason and for HF was reduced by > 26% in the overall cohort, and in subgroups of patients ≥ 75 years, with NYHA class III/IV (all P < 0.0001) or with NYHA class IV (P < 0.05), vs. baseline. All-cause mortality did not increase in real-world patients with NYHA class III/IV. The results support the long-term beneficial effects of sacubitril/valsartan in older patients and in those experiencing the most severe symptoms.

收起

展开

DOI:

10.1038/s41598-024-64243-w

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(108)

参考文献(25)

引证文献(1)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读