Development and Validation of a Nomogram Based on DCE-MRI Radiomics for Predicting Hypoxia-Inducible Factor 1α Expression in Locally Advanced Rectal Cancer.

来自 PUBMED

作者:

Li ZHuang HZhao ZMa WMao HLiu FYang YWang DLu Z

展开

摘要:

The expression levels of hypoxia-inducible factor 1 alpha (HIF-1α) have been identified as a pivotal marker, correlating with treatment response in patients with locally advanced rectal cancer (LARC). This study aimed to develop and validate a nomogram based on dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinical features for predicting the expression of HIF-1α in patients with LARC. A total of 102 patients diagnosed with locally advanced rectal cancer were divided into training (n = 71) and validation (n = 31) cohorts. The expression statuses of HIF-1α were histopathologically classified, categorizing patients into high and low expression groups. The intraclass correlation coefficient (ICC), minimum redundancy maximum relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) were employed for feature selection to construct a radiomics signature and calculate the radiomics score (Rad-score). Univariate and multivariate analyses of clinical features and Rad-score were applied, and the clinical model and the nomogram were constructed. The predictive performance of the nomogram incorporating clinical features and Rad-score was assessed using Receiver Operating Characteristics (ROC) curves, decision curve analysis (DCA), and calibration curves. Seven radiomics features from DCE-MRI were used to build the radiomics signature. The nomogram incorporating CEA, Ki-67 and Rad-score had the highest AUC values in the training cohort and in the validation cohort (AUC: 0.918 and 0.920). Decision curve analysis showed that the nomogram outperformed the clinical model and radiomics signature in terms of clinical utility. In addition, the calibration curve for the nomogram demonstrated good agreement between prediction and actual observation. The nomogram based on DCE-MRI radiomics and clinical features showed favorable predictive efficacy and might be useful for preoperatively discriminating the expression of HIF-1α.

收起

展开

DOI:

10.1016/j.acra.2024.05.015

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读