-
Development and Validation of a Nomogram Based on DCE-MRI Radiomics for Predicting Hypoxia-Inducible Factor 1α Expression in Locally Advanced Rectal Cancer.
The expression levels of hypoxia-inducible factor 1 alpha (HIF-1α) have been identified as a pivotal marker, correlating with treatment response in patients with locally advanced rectal cancer (LARC). This study aimed to develop and validate a nomogram based on dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinical features for predicting the expression of HIF-1α in patients with LARC.
A total of 102 patients diagnosed with locally advanced rectal cancer were divided into training (n = 71) and validation (n = 31) cohorts. The expression statuses of HIF-1α were histopathologically classified, categorizing patients into high and low expression groups. The intraclass correlation coefficient (ICC), minimum redundancy maximum relevance (mRMR), and the least absolute shrinkage and selection operator (LASSO) were employed for feature selection to construct a radiomics signature and calculate the radiomics score (Rad-score). Univariate and multivariate analyses of clinical features and Rad-score were applied, and the clinical model and the nomogram were constructed. The predictive performance of the nomogram incorporating clinical features and Rad-score was assessed using Receiver Operating Characteristics (ROC) curves, decision curve analysis (DCA), and calibration curves.
Seven radiomics features from DCE-MRI were used to build the radiomics signature. The nomogram incorporating CEA, Ki-67 and Rad-score had the highest AUC values in the training cohort and in the validation cohort (AUC: 0.918 and 0.920). Decision curve analysis showed that the nomogram outperformed the clinical model and radiomics signature in terms of clinical utility. In addition, the calibration curve for the nomogram demonstrated good agreement between prediction and actual observation.
The nomogram based on DCE-MRI radiomics and clinical features showed favorable predictive efficacy and might be useful for preoperatively discriminating the expression of HIF-1α.
Li Z
,Huang H
,Zhao Z
,Ma W
,Mao H
,Liu F
,Yang Y
,Wang D
,Lu Z
... -
《-》
-
Multiphases DCE-MRI Radiomics Nomogram for Preoperative Prediction of Lymphovascular Invasion in Invasive Breast Cancer.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) radiomics had been used to evaluate lymphovascular invasion (LVI) in patients with breast cancer. However, no studies had explored the associations between features from delayed phase as well as multiphases DCE-MRI and the LVI status. Thus, we aimed to develop an efficient nomogram based on multiphases DCE-MRI to predict the LVI status in invasive (IBC) breast cancer patients.
A retrospective analysis was conducted on preoperative clinical, pathological, and DCE-MRI data of 173 breast cancer patients. All patients were randomly assigned into training set (n=121) and validation set (n=52) in 7:3 ratio. The clinical, pathologic, and conventional MRI characteristics were then subjected to univariate and multivariate logistic regression analysis, and the clinical risk factors with P < 0.05 in the multivariate logistic regression were used to build clinical models. Different single-phase models (early phase, peak phase, and terminal phase), as well as a multiphases model integrating radiomics features from multiple phases, were established. Furthermore, a preoperative radiomics nomogram model was constructed by combining the rad-score of the multiphases model with clinicopathologic independent risk factors. Finally, the performance of the multiphases model, clinical model, and rad-score was compared using receiver operating characteristic (ROC) curves, area under the curve (AUC) values, and decision curve analysis (DCA). The clinical utility of the rad-score was evaluated using calibration curves, and Delong test was used to compare the differences in AUC values among the different models.
The axillary lymph nodes (ALN) status and Ki-67 had been identified as clinicopathologic independent predictors and a clinical model had been constructed. Image features that were extracted from the terminal phase of the DCE-MRI exhibited notably superior predictive performances compared to features from the other single phases. Particularly, in the multiphases model, terminal phase features were identified as potentially providing more predictive information. Among the nine features that were found to be associated with LVI in the multiphase model, one was derived from the early phase, two from the peak phase, and six from the terminal phase, indicating that terminal phase features contributed significantly more information towards predicting LVI. Evaluation of the nomogram performance revealed promising results in both the training set (AUCs: clinical model vs. multiphase model vs. nomogram=0.734 vs. 0.840 vs. 0.876) and the validation set (AUCs: clinical model vs. multiphase model vs. nomogram=0.765 vs. 0.753 vs. 0.832).
The DCE-MRI-based radiomics model demonstrated utility in predicting LVI status, features of the terminal phase offered more valuable information particularly. The preoperative radiomics nomogram enhanced the diagnostic capability of identifying LVI status in IBC patients, and might aid clinicians in making personalized treatment decisions.
Ma Q
,Lu X
,Chen Q
,Gong H
,Lei J
... -
《-》
-
MRI-based radiomics feature combined with tumor markers to predict TN staging of rectal cancer.
The aim of this study is to evaluate the predictive ability of MRI-based radiomics combined with tumor markers for TN staging in patients with rectal cancer and to develop a prediction model for TN staging. A total of 190 patients with rectal adenocarcinoma who underwent total mesorectal excision at the First Affiliated Hospital of the Air Force Medical University between January 2016 and December 2020 were included in the study. An additional 54 patients from a prospective validation cohort were included between August 2022 and August 2023. Preoperative tumor markers and MRI imaging data were collected from all enrolled patients. The 190 patients were divided into a training cohort (n = 133) and a validation cohort (n = 57). Radiomics features were extracted by outlining the region of interest (ROI) on T2WI sequence images. Feature selection and radiomics score (Rad-score) construction were performed using least absolute shrinkage and selection operator regression analysis (LASSO). The postoperative pathology TNM stage was used to differentiate locally advanced rectal cancer (T3/4 or N1/2) from locally early rectal cancer (T1/2, N0). Logistic regression was used to construct separate prediction models for T stage and N stage. The models' predictive performance was evaluated using DCA curves and calibration curves. The T staging model showed that Rad-score, based on 8 radiomics features, was an independent predictor of T staging. When combined with CEA, tumor diameter, mesoretal fascia (MRF), and extramural venous invasion (EMVI), it effectively differentiated between T1/2 and T3/4 stage rectal cancers in the training cohort (AUC 0.87 [95% CI: 0.81-0.93]). The N-staging model found that Rad-score, based on 10 radiomics features, was an independent predictor of N-staging. When combined with CA19.9, degree of differentiation, and EMVI, it effectively differentiated between N0 and N1/2 stage rectal cancers. The training cohort had an AUC of 0.84 (95% CI: 0.77-0.91). The calibration curves demonstrated good precision between the predicted and actual results. The DCA curves indicated that both sets of predictive models could provide net clinical benefits for diagnosis. MRI-based radiomics features are independent predictors of T staging and N staging. When combined with tumor markers, they have good predictive efficacy for TN staging of rectal cancer.
Liu Z
,Zhang J
,Wang H
,Chen X
,Song J
,Xu D
,Li J
,Zheng M
... -
《-》
-
Development and Validation of an MRI-Based Radiomics Nomogram to Predict the Prognosis of De Novo Oligometastatic Prostate Cancer Patients.
We aimed to develop and validate a nomogram based on MRI radiomics to predict overall survival (OS) for patients with de novo oligometastatic prostate cancer (PCa).
A total of 165 patients with de novo oligometastatic PCa were included in the study (training cohort, n = 115; validating cohort, n = 50). Among them, MRI scans were conducted and T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC) sequences were collected for radiomics features along with their clinicopathological features. Radiological features were extracted from T2WI and ADC sequences for prostate tumors. Univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) combined with 10-fold cross-validation were used to select the optimal features on each sequence. Then, a weighted radiomics score (Rad-score) was generated and independent risk factors were obtained from univariate and multivariate Cox regressions to build the nomogram. Model performance was assessed using receiver operating characteristic (ROC) curves, calibration, and decision curve analysis (DCA).
Eastern Cooperative Oncology Group (ECOG) score, absolute neutrophil count (ANC) and Rad-score were included in the nomogram as independent risk factors for OS in de novo oligometastatic PCa patients. We found that the areas under the curves (AUCs) in the training cohort were 0.734, 0.851, and 0.773 for predicting OS at 1, 2, and 3 years, respectively. In the validating cohort, the AUCs were 0.703, 0.799, and 0.833 for predicting OS at 1, 2, and 3 years, respectively. Furthermore, the clinical relevance of the predictive nomogram was confirmed through the analysis of DCA and calibration curve analysis.
The MRI-based nomogram incorporating Rad-score and clinical data was developed to guide the OS assessment of oligometastatic PCa. This helps in understanding the prognosis and improves the shared decision-making process.
Liu WQ
,Xue YT
,Huang XY
,Lin B
,Li XD
,Ke ZB
,Chen DN
,Chen JY
,Wei Y
,Zheng QS
,Xue XY
,Xu N
... -
《Cancer Medicine》
-
Development and Validation of a Diagnostic Model for Enhancing Lesions on Breast MRI: Based on Kaiser Score.
This study aims to develop and validate a new diagnostic model based on the Kaiser score for preoperative diagnosis of the malignancy probability of enhancing lesions on breast MRI.
This study collected consecutive inpatient data (including imaging data, clinical data, and pathological data) from two different institutions. All patients underwent preoperative breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) examinations and were found to have enhancing lesions. These lesions were confirmed as benign or malignant by surgical resection or biopsy pathology (all carcinomas in situ were confirmed by pathology after surgical resection). Data from one institution were used as the training set(284 cases), and data from the other institution were used as the validation set(107 cases). The Kaiser score was directly incorporated into the diagnostic model as a single predictive variable. Other predictive variables were screened using Least Absolute Shrinkage and Selection Operator (LASSO) regression. Multivariate logistic regression was employed to integrate the Kaiser score and other selected predictive variables to construct a new diagnostic model, presented in the form of a nomogram. Receiver operating characteristic (ROC) curve, DeLong test, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were adopted to evaluate and compare the discrimination of the diagnostic model for breast enhancing lesions based on Kaiser score (hereinafter referred to as the "breast lesion diagnostic model") and the Kaiser score alone. Calibration curves were used to assess the calibration of the breast lesion diagnostic model, and decision curve analysis (DCA) was used to evaluate the clinical efficacy of the diagnostic model and the Kaiser score.
LASSO regression indicated that, besides the indicators already included in the Kaiser score system, "age", "MIP sign", "associated imaging features", and "clinical breast examination (CBE) results" were other valuable diagnostic parameters for breast enhancing lesions. In the training set, the AUCs of the breast lesion diagnostic model and the Kaiser score were 0.948 and 0.869, respectively, with a statistically significant difference (p < 0.05). In the validation set, the AUCs of the breast lesion diagnostic model and the Kaiser score were 0.956 and 0.879, respectively, with a statistically significant difference (p < 0.05). The DeLong test, NRI, and IDI showed that the breast lesion diagnostic model had a higher discrimination ability for breast enhancing lesions compared to the Kaiser score alone, with statistically significant differences (p < 0.05). The calibration curves indicated good calibration of the breast lesion diagnostic model. DCA demonstrated that the breast lesion diagnostic model had higher clinical application value, with greater net clinical benefit over a wide range of diagnostic thresholds compared to the Kaiser score.
The Kaiser score-based breast lesion diagnostic model, which integrates "age," "MIP sign", "associated imaging features", and "CBE results", can be used for the preoperative diagnosis of the malignancy probability of breast enhancing lesions, and it outperforms the classic Kaiser score in terms of diagnostic performance for such lesions.
Yi X
,Wang G
,Yang Y
,Che Y
... -
《-》