MRI-based radiomics feature combined with tumor markers to predict TN staging of rectal cancer.

来自 PUBMED

作者:

Liu ZZhang JWang HChen XSong JXu DLi JZheng M

展开

摘要:

The aim of this study is to evaluate the predictive ability of MRI-based radiomics combined with tumor markers for TN staging in patients with rectal cancer and to develop a prediction model for TN staging. A total of 190 patients with rectal adenocarcinoma who underwent total mesorectal excision at the First Affiliated Hospital of the Air Force Medical University between January 2016 and December 2020 were included in the study. An additional 54 patients from a prospective validation cohort were included between August 2022 and August 2023. Preoperative tumor markers and MRI imaging data were collected from all enrolled patients. The 190 patients were divided into a training cohort (n = 133) and a validation cohort (n = 57). Radiomics features were extracted by outlining the region of interest (ROI) on T2WI sequence images. Feature selection and radiomics score (Rad-score) construction were performed using least absolute shrinkage and selection operator regression analysis (LASSO). The postoperative pathology TNM stage was used to differentiate locally advanced rectal cancer (T3/4 or N1/2) from locally early rectal cancer (T1/2, N0). Logistic regression was used to construct separate prediction models for T stage and N stage. The models' predictive performance was evaluated using DCA curves and calibration curves. The T staging model showed that Rad-score, based on 8 radiomics features, was an independent predictor of T staging. When combined with CEA, tumor diameter, mesoretal fascia (MRF), and extramural venous invasion (EMVI), it effectively differentiated between T1/2 and T3/4 stage rectal cancers in the training cohort (AUC 0.87 [95% CI: 0.81-0.93]). The N-staging model found that Rad-score, based on 10 radiomics features, was an independent predictor of N-staging. When combined with CA19.9, degree of differentiation, and EMVI, it effectively differentiated between N0 and N1/2 stage rectal cancers. The training cohort had an AUC of 0.84 (95% CI: 0.77-0.91). The calibration curves demonstrated good precision between the predicted and actual results. The DCA curves indicated that both sets of predictive models could provide net clinical benefits for diagnosis. MRI-based radiomics features are independent predictors of T staging and N staging. When combined with tumor markers, they have good predictive efficacy for TN staging of rectal cancer.

收起

展开

DOI:

10.1007/s11701-024-01978-8

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(30)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读