Evaluation of Antibacterial Efficacy of Centella asiatica-Mediated Selenium Oxide Nanoparticles Against Multidrug-Resistant Upper Respiratory Isolates.

来自 PUBMED

作者:

Nataraj MCarmelin DSGeetha Sravanthy PSaravanan M

展开

摘要:

Background The evolution of new respiratory diseases, especially upper respiratory tract infections and resistance of pathogens to various antibiotic treatments, needs an alternative way of medication. Chronic respiratory infections in both adults and infants are the major cause of morbidity and mortality, particularly in developing countries. The widespread application of nanomaterials in the field of medicine and the incorporation of nanoparticles in drugs are taken into account. These nanomaterials are involved along with the biosynthesis of plant extract. In this study, selenium oxide nanoparticles (SeO-NPs), known as a significant trace element for human health, were synthesized in an eco-friendly manner. Methodology Green synthesis of Centella asiatica-mediated SeO-NPs was proceeded by titration method and nanoparticles were synthesized. The color intensity, morphological characters, functional properties, and involvement of phytochemical compounds were studied by using UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. Results The synthesized extract showed a color change from brown to ruby red. Results obtained by characterization and biological assays depicted that the Centella asiatica-mediated SeO-NPs showed absorbance at the peak level 320 nm by UV-Vis spectroscopy, several phytochemical compounds, and O-H functional groups by FT-IR which may be involved in the reduction of the selenium oxide nanoparticles. The XRD showed 57.1% crystalline and 42.6% amorphous nature. The SEM images showed that agglomerated spherical shapes were involved in biological activities. The EDX analysis showed the presence of Se, C, and O compounds. Further, the antibacterial activity of the synthesized nanoparticles showed significant activity in the multidrug-resistant respiratory pathogens. Conclusions Based on the characterization studies and biomedical assays, it can be concluded that the incorporation of SeO-NPs along with the plant extract serves as the best remedy and organic treatment for upper respiratory tract infections. We plan to conduct further in-vivo, toxicity-level studies, and clinical trials.

收起

展开

DOI:

10.7759/cureus.58350

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(105)

参考文献(21)

引证文献(0)

来源期刊

Cureus

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读