Green Synthesis of Molybdenum Nanoparticles From Solanum xanthocarpum and Evaluation of Their Antimicrobial and Antioxidant Activity Against Multidrug-Resistant Wound Isolates.

来自 PUBMED

作者:

Bharathidasan PSurya MGeetha Sravanthy PSaravanan M

展开

摘要:

In recent years, antimicrobial drug resistance has emerged as a serious global public health concern, according to the World Health Organization data. The emergence of pathogens resistant to multiple drugs has been linked to an increase in morbidity and mortality from microbial infections. The study's main goal is to explore the efficacy of using Solanum xanthocarpum in the green synthesis of molybdenum nanoparticles (Mo NPs) for antibacterial and antioxidant properties. An eco-friendly method of synthesizing Mo NPs was accomplished using an aqueous extract of Solanum xanthocarpum. Characterization of the synthesized nanoparticles was done by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). After that, antibacterial and antioxidant activity was further evaluated. The UV-visible spectrophotometer analysis confirmed the presence of synthesized Mo NPs showing a peak around 320 nm. The presence of functional compounds like C-CI, C-H, C=C, and O=C=O was confirmed by FT-IR spectrum analysis. The positions of diffraction peaks in Mo NP patterns were identified using XRD analysis; they were more crystalline (82.7%) and less amorphous (17.3%). The presence of the elements molybdenum (Mo), carbon (C), and oxygen (O) was confirmed by the EDX spectrum and irregular shapes shown in the SEM images. Further, the antimicrobial study results showed the formation of an inhibition zone against 27 mm for Klebsiella pneumoniae, 24 mm for Pseudomonas aeruginosa, 22 mm for Staphylococcus aureus, and 24 mm for Enterococcus faecalis, respectively, at a high concentration 80 μg/ml of Mo NPs. The maximum antioxidant activity at 100 μg/ml was 73.49%, compared to the standard ascorbic acid (74.25%). Additionally, the moderate activity at 60 μg/ml was 53.21%, compared to the standard (56.5%), and the minimal activity at 20 μg/ml was 30.21%, compared to the standard (36.89%). The environmentally friendly synthesized Mo NPs from Solanum xanthocarpum exhibited antioxidant activity. Furthermore, the findings show that Mo NPs mediated by Solanum xanthocarpum can inhibit antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis. In order to understand further how nanoparticles work against bacteria that are resistant to many drugs, additional research and clinical studies would be needed.

收起

展开

DOI:

10.7759/cureus.56760

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(138)

参考文献(13)

引证文献(1)

来源期刊

Cureus

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读