-
Causal relationship between intervertebral disc degeneration and osteoporosis: a bidirectional two-sample Mendelian randomization study.
Liu G
,Zhang H
,Chen M
,Chen W
... -
《Frontiers in Endocrinology》
-
Causal relationship between bone mineral density and intervertebral disc degeneration: a univariate and multivariable mendelian randomization study.
Although previous studies have suggested a possible association between bone mineral density (BMD) and intervertebral disc degeneration (IDD), the causal relationship between them remains unclear. Evidence from accumulating studies indicates that they might mutually influence one another. However, observational studies may be affected by potential confounders. Meanwhile, Mendelian randomization (MR) study can overcome these confounders to assess causality.
This Mendelian randomization (MR) study aimed to explore the causal effect of bone mineral density (BMD) on intervertebral disc degeneration (IDD).
Summary data from genome-wide association studies of bone mineral density (BMD) and IDD (the FinnGen biobank) have been acquired. The inverse variance weighted (IVW) method was utilized as the primary MR analysis approach. Weighted median, MR-Egger regression, weighted mode, and simple mode were used as supplements. The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were performed to assess horizontal pleiotropy. Cochran's Q test evaluated heterogeneity. Leave-one-out sensitivity analysis was further conducted to determine the reliability of the causal relationship. Multivariate MR (MVMR) analyses used multivariable inverse variance-weighted methods to individually and jointly adjust for four potential confounders, body mass index (BMI), Type2 diabetes, hyperthyroidism and smoking. A reverse MR analysis was conducted to assess potential reverse causation.
In the univariate MR analysis, femoral neck bone mineral density (FNBMD), heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) had a direct causal effect on intervertebral disc degeneration (IDD) [FNBMD-related analysis: OR(95%CI) = 1.17 (1.04 to 1.31), p = 0.008, eBMD-related analysis: OR(95%CI) = 1.06 (1.01 to 1.12), p = 0.028, LSBMD-related analysis: OR(95%CI) = 1.20 (1.10 to 1.31), p = 3.38E-7,TB BMD-related analysis: OR(95%CI) = 1.20 (1.12 to 1.29), p = 1.0E-8]. In the MVMR analysis, it was revealed that, even after controlling for confounding factors, heel bone mineral density (eBMD), lumbar spine bone mineral density (LSBMD), and total body bone mineral density (TB BMD) still maintained an independent and significant causal association with IDD(Adjusting for heel bone mineral density: beta = 0.073, OR95% CI = 1.08(1.02 to 1.14), P = 0.013; Adjusting for lumbar spine bone mineral density: beta = 0.11, OR(95%CI) = 1.12(1.02 to 1.23), P = 0.03; Adjusting for total body bone mineral density: beta = 0.139, OR95% CI = 1.15(1.06 to 1.24), P = 5.53E - 5). In the reverse analysis, no evidence was found to suggest that IDD has an impact on BMD.
The findings from our univariate and multivariable Mendelian randomization analysis establish a substantial positive causal association between BMD and IDD, indicating that higher bone mineral density may be a significant risk factor for intervertebral disc degeneration. Notably, no causal effect of IDD on these four measures of bone mineral density was observed. Further research is required to elucidate the underlying mechanisms governing this causal relationship.
Li L
,Li D
,Geng Z
,Huo Z
,Kang Y
,Guo X
,Yuan B
,Xu B
,Wang T
... -
《BMC MUSCULOSKELETAL DISORDERS》
-
Intervertebral Disk Degeneration and Bone Mineral Density: A Bidirectional Mendelian Randomization Study.
This study aimed to investigate the causal relationship between bone mineral density (BMD) and intervertebral disk degeneration (IVDD) using a two-sample bidirectional Mendelian randomization analysis. Summary-level data from the Genome-Wide Association Study (GWAS) were used. Instrumental variables (IVs) for IVDD were selected from the large-scale Genome-Wide Association Study (GWAS) (20,001 cases and 164,682 controls). Bone mineral density (BMD) at five different sites (heel (n = 426,824), total body (TB) (n = 56,284), forearm (FA) (n = 8143), femoral neck (FN) (n = 32,735), and lumbar spine (LS) (n = 28,498)) was used as a phenotype for OP. Bidirectional causality between IVDD and BMD was assessed using inverse variance weighting (IVW) and other methods. Related sensitivity analyses were performed. Myopia was also analyzed as a negative control result to ensure the validity of IVs. Heel bone mineral density (heel BMD), total body bone mineral density (TB-BMD), femoral neck bone mineral density (FN-BMD), and lumbar spine bone mineral density (LS-BMD) have a direct causal relationship on intervertebral disk degeneration (IVDD) [heel BMD-related analysis: beta = 0.06, p = 0.03; TB-BMD-related analysis: beta = 0.18, p = 8.72E-08; FN-BMD-related analysis: beta = 0.15, p = 4.89E-03; LS-BMD-related analysis: beta = 0.16, p = 1.43E-04]. There was no evidence of a significant causal effect of IVDD on BMD. In conclusion, our study found a significant positive causal effect of lower BMD on IVDD, and we identified significant causal effects of heel, TB-, FN-, and LS-BMD on IVDD, but there was no evidence of a significant causal effect of IVDD on BMD.
Zhao J
,Wang J
,Xu H
,Hu W
,Shi F
,Fan Z
,Zhou C
,Mu H
... -
《-》
-
Metformin treatment reduces the incidence of osteoporosis: a two-sample Mendelian randomized study.
It remains unclear whether the association between metformin and osteoporosis (OP) risk is causal. This two-sample Mendelian randomization (MR) study suggests a causal relationship between metformin treatment and a decrease in OP and fracture incidence, as well as an increase in bone mineral density (BMD) in the lumbar spine, femoral neck, and heel. Nonetheless, no significant causal effect is observed on forearm BMD.
We utilize a MR approach to investigate the association between metformin treatment and the risk of OP.
Metformin treatment was selected as exposures. Outcomes included OP; BMD at the forearm (FA), femoral neck (FN), and lumbar spine (LS); estimated heel bone mineral density (eBMD); and fracture. Summary statistics for exposures and outcomes were obtained from corresponding genome-wide association studies. Inverse variance-weighted (IVW) analysis was mainly applied; the weighted median (WM), penalized weighted median (PWM), maximum likelihood (ML), and MR-Egger regression (MR-Egger) method were also used to obtain robust estimates. A series of sensitivity analyses including Cochran's Q test, MR-Egger regression, leave-one-out analysis, and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) were used to detect pleiotropy or heterogeneity.
In the main analysis, IVW estimates demonstrated that metformin treatment had a definite causal effect on the risk of OP (odds ratio (OR): 0.859, 95% CI: 0.774-0.953, P = 0.004), LS-BMD (OR: 1.063, 95% CI: 1.023-1.105, P = 0.002), FN-BMD (OR: 1.034, 95% CI: 1.000-1.069, P = 0.049), eBMD (OR: 1.035, 95% CI: 1.023-1.047, P ≤ 0.001), and fracture(OR: 0.958, 95% CI: 0.928-0.989, P = 0.008). However, it did not have an effect on FA-BMD(OR: 1.050, 95% CI: 0.969-1.138, P = 0.237).
This study indicated that metformin treatment is significantly associated with a reduction in the risk of OP, fracture and higher LS-BMD, FN-BMD, and eBMD. However, there was no significant association with FA-BMD.
Cai Y
,Jun G
,Zhuang X
《-》
-
Genetically determined type 1 diabetes mellitus and risk of osteoporosis.
Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed.
T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results.
Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust.
This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.
Cheng T
,Hou JL
,Han ZY
,Geng XL
,Zhang YC
,Fan KY
,Liu L
,Zhang HY
,Huo YH
,Li XF
,Zhang SX
... -
《-》