-
Biogenic synthesis, characterization, and in vitro biological investigation of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata.
The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 μg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 μg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 μg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.
Ullah Z
,Iqbal J
,Gul F
,Abbasi BA
,Kanwal S
,Elsadek MF
,Ali MA
,Iqbal R
,Elsalahy HH
,Mahmood T
... -
《Scientific Reports》
-
Mycofabrication of AgONPs derived from Aspergillus terreus FC36AY1 and its potent antimicrobial, antioxidant, and anti-angiogenesis activities.
There is an emergency need for the natural therapeutic agents to treat arious life threatening diseases such as cardio- vascular disease, Rheumatoid arthritis and cancer. Among these diseases, cancer is found to be the second life threatening disease; in this view the present study focused to synthesize the silver oxide nanoparticles (AgONPs) from endophytic fungus.
The endophytic fungus was isolated from a medicinal tree Aegle marmelos (Vilva tree) and the potential strain was screened through antagonistic activity. The endophytic fungus was identified through microscopic (Lactophenol cotton blue staining and spore morphology in culture media) and Internal Transcribed Spacer (ITS) 1, ITS 4 and 18S rRNA amplification. The endophyte was cultured for the synthesis of AgONPs and the synthesized NPs were characterized through UV- Vis, FT- IR, EDX, XRD and SEM. The synthesized AgONPs were determined for antimicrobial, antioxidant and anti- angiogenic activity.
About 35 pigmented endophytic fungi were isolated, screened for antagonistic activity against 12 pathogens and antioxidant activity through DPPH radical scavenging assay; among the isolates, FC36AY1 explored the highest activity and the strain FC36AY1 was identified as Aspergillus terreus. The AgONPs were synthesized from the strain FC36AY1 and characterized for its confirmation, functional groups, nanostructures with unit cell dimensions, size and shape, presence of elements through UV-Vis spectrophotometry, FT-IR, XRD, SEM with EDX analysis. The myco-generated AgONPs manifested their antimicrobial and antioxidant properties with maximum activity at minimum concentration. Moreover, the inhibition of angiogenesis by the AgONPs in Hen's Egg Test on the Chorio-Allantoic Membrane analysis were tested on the eggs of Chittagong breed evinced at significant bioactivity least concentration at 0.1 µg/mL.
Thus, the results of this study revealed that the fungal mediated AgONPs can be exploited as potential in biomedical applications.
Vellingiri MM
,Ashwin JKM
,Soundari AJPG
,Sathiskumar S
,Priyadharshini U
,Paramasivam D
,Liu WC
,Balasubramanian B
... -
《-》
-
A Novel Approach of Synthesizing and Evaluating the Anticancer Potential of Silver Oxide Nanoparticles in vitro.
Development of novel strategies to kill cancer by sparing normal cells is of utmost importance. Apart from their known antimicrobial activity, only limited information has been recorded regarding the antitumor potential of biocompatible silver oxide nanoparticles (AgONPs). There is a need to evaluate the anticancer potential of biocompatible AgONPs in vitro.
A new approach of utilizing the leaf extract of Excoecaria agallocha was used to synthesize AgONPs. This was then characterized by ultraviolet-visible spectrophotometry, nanoparticle-tracking analysis, and ζ-potential analysis. Cytotoxicity and apoptotic potential were evaluated with an MTT assay and an annexin V-binding assay against the murine melanoma (B16F10), murine colon cancer (CT26), murine lung adenocarcinoma (3LL), and murine Ehrlich ascites carcinoma (EAC) cell lines. Cellular localization of AgONPs was evaluated on fluorescence microscopy.
UV peaks at 270 and 330 nm indicated the formation of nanoparticles (NPs) and the NP-tracking analyzer revealed them to have a size of 228 nm. AgONPs exerted initial cytotoxicity, specifically against all the experimental malignant cells by sparing the normal cell lines. Moreover, AgONPs exert apoptosis equally on all the malignant cells in vitro and ex vivo. This cytotoxicity possibly occurs via the nuclear translocation of AgONPs as analyzed in B16F10 cells.
AgONPs utilizing natural sources would be a new medicinal approach against a broad spectrum of malignancy.
Banerjee K
,Das S
,Choudhury P
,Ghosh S
,Baral R
,Choudhuri SK
... -
《-》
-
Anabaena sp. A-1 mediated molybdenum oxide nanoparticles: A novel frontier in green synthesis, characterization and pharmaceutical properties.
Green-synthesized metal oxide nanoparticles have garnered considerable attention due to their simple, sustainable, and eco-friendly attributes, coupled with their diverse applications in biomedicine and environmental context. The current study shows a sustainable approach for synthesizing molybdenum oxide nanoparticles (MoONPs) utilizing an extract from Anabaena sp. A-1. This novel approach marks a significant milestone as various spectral approaches were employed for characterization of the green-synthesized MoONPs. Ultraviolet-visible (UV-Vis) spectroscopic analysis revealed a surface plasmon resonance (SPR) peak of MoONPs at 538 nm. Fourier transform infrared (FTIR) spectral analysis facilitated the identification of functional groups responsible for both the stability and production of MoONPs. Scanning electron microscopy (SEM) was utilized revealing a rod shape morphology of the MoONPs. X-ray diffraction (XRD) analysis yielded a calculated crystal size of 31 nm, indicating the crystalline nature of MoONPs. Subsequently, biological assays were employed to ascertain the potential of the bioengineered MoONPs. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to quantify free radical scavenging activity, revealing an antioxidant capacity of 68.1% at 200 μg/mL. To evaluate antibacterial and antifungal efficacy, the disc diffusion method was employed across varying concentrations of MoONPs (6.25, 12.5, 25, 50, 100, 150, 200 μg/mL). Quantification of cytotoxicity was performed via a brine shrimp assay, yielding an IC50 value of 552.3 μg/mL, a metric of moderate cytotoxicity. To assess the biocompatibility of MoONPs, an antihemolytic assay was conducted, confirming their safety profile. Additionally, MoONPs exhibited non-toxic attributes in an insecticidal assay. Notably, in anti-inflammatory assay MoONPs showed an inactive nature towards the reactive oxygen species. In conclusion, these findings highlight the potential versatility of MoONPs in various biological applications, extending beyond their recognized anti-inflammatory and insecticidal properties. RESEARCH HIGHLIGHTS: This study marks an advancement in nanotechnology, exploring ways for MoONPs fabrication, representing a unique and unexplored research domain. Green-synthesized MoONPs using Anabaena sp. A-1 extract offers a sustainable and eco-friendly approach. Characterized by UV-Vis, FTIR, SEM, and XRD, MoONPs demonstrate rod-shaped morphology and crystalline nature. Bioengineered MoONPs exhibit versatility in biological applications, demonstrating notable antioxidant, antibacterial and antifungal efficacy, moderate cytotoxicity, biocompatibility, and insecticidal properties, emphasizing their multifaceted utility. The research findings highlight the potential utilization of MoONPs across a spectrum of biological applications, thereby suggesting their promising role in the realm of biomedicine and environmental context.
Malik HA
,Minhas LA
,Hassan MW
,Kaleem M
,Aslam F
,Mumtaz AS
... -
《-》
-
Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties.
Eco-friendly biosynthesis of nanoparticles from medicinal plants as reducing agent has gained importance due to its potential therapeutic uses. In the present study Silver nanoparticles (AgNPs) were eco-friendly synthesized using the leaf extracts of the medicinal plant Tropaeolum majus. The obtained AgNPs were characterized by UV - visible spectrum, FTIR, SEM and XRD which clearly showed the reduction of Ag+ ions to Ag0. In addition, the aqueous and ethanolic extracts were analyzed for phytochemicals and its antioxidant activities. GC-MS spectrum showed the presence of 25 compounds with benzeneacetic acid as the dominant contents. The synthesized AgNPs revealed maximum absorption spectrum at 463 nm and FTIR vibrational peaks at 3357.46, 21,966.52, 2118.42, 1637.27, 658.571 and 411.728 cm-1 respectively. SEM and XRD studies evidenced the nature of nanocrystalline with face centered cubic (fcc) crystal structure. Both AgNPs and plant extracts showed more inhibition activity against Pseudomonas aeroginosa compared to other bacteria with MIC value of 6.25 μg/ml. Antifungal activities was higher for Penicilium notatum with MIC value 31.2 μg/ml. The IC50 values for MCF7 for aqueous extract were found to be 4.68 μg/ml, ethanol extract 7.5 μg/ml, AgNPs 2.49 μg/ml, and doxorubicin 1.4 μg/ml. The IC50 values for VERO cell line for aqueous extract was 8.1 μg/ml, ethanol extract with 6.8 μg/ml, silver nanoparticles 5.3 μg/ml and doxorubicin 2.6 μg/ml respectively. Conclusively, the antibacterial, antifungal, antioxidant and anticancer properties of the synthesized AgNPs from Tropaeolum majus act as major therapeutic drug for microbial infectious disease and other health associated disorders.
Valsalam S
,Agastian P
,Arasu MV
,Al-Dhabi NA
,Ghilan AM
,Kaviyarasu K
,Ravindran B
,Chang SW
,Arokiyaraj S
... -
《-》