Predictive nomogram model for major adverse kidney events within 30 days in sepsis patients with type 2 diabetes mellitus.
In sepsis patients, Type 2 Diabetes Mellitus (T2DM) was associated with an increased risk of kidney injury. Furthermore, kidney damage is among the dangerous complications, with a high mortality rate in sepsis patients. However, the underlying predictive model on the prediction of major adverse kidney events within 30 days (MAKE30) in sepsis patients with T2DM has not been reported by any study.
A total of 406 sepsis patients with T2DM were retrospectively enrolled and divided into a non-MAKE30 group (261 cases) and a MAKE30 group (145 cases). In sepsis patients with T2DM, univariate and multivariate logistic regression analyses were conducted to identify independent predictors of MAKE30. Based on the findings of multivariate logistic regression analysis, the corresponding nomogram was constructed. The nomogram was evaluated using the calibration curve, Receiver Operating Characteristic (ROC) curve, and decision curve analysis. A composite of death, new Renal Replacement Therapy (RRT), or Persistent Renal Dysfunction (PRD) comprised MAKE30. Finally, subgroup analyses of the nomogram for 30-day mortality, new RRT, and PRD were performed.
In sepsis patients with T2DM, Mean Arterial Pressure (MAP), Platelet (PLT), cystatin C, High-Density Lipoprotein (HDL), and apolipoprotein E (apoE) were independent predictors for MAKE30. According to the ROC curve, calibration curve, and decision curve analysis, the nomogram model based on those predictors had satisfactory discrimination (AUC = 0.916), good calibration, and clinical application. Additionally, in sepsis patients with T2DM, the nomogram model exhibited a high ability to predict the occurrence of 30-day mortality (AUC = 0.822), new RRT (AUC = 0.874), and PRD (AUC = 0.801).
The nomogram model, which is available within 24 hours after admission, had a robust and accurate assessment for the MAKE30 occurrence, and it provided information to better manage sepsis patients with T2DM.
Xin Q
,Xie T
,Chen R
,Wang H
,Zhang X
,Wang S
,Liu C
,Zhang J
... -
《-》
Construction and validation of an early warning model for predicting the acute kidney injury in elderly patients with sepsis.
Sepsis-induced acute kidney injury (S-AKI) is a significant complication and is associated with an increased risk of mortality, especially in elderly patients with sepsis. However, there are no reliable and robust predictive models to identify high-risk patients likely to develop S-AKI. We aimed to develop a nomogram to predict S-AKI in elderly sepsis patients and help physicians make personalized management within 24 h of admission.
A total of 849 elderly sepsis patients from the First Affiliated Hospital of Xi'an Jiaotong University were identified and randomly divided into a training set (75%, n = 637) and a validation set (25%, n = 212). Univariate and multivariate logistic regression analyses were performed to identify the independent predictors of S-AKI. The corresponding nomogram was constructed based on those predictors. The calibration curve, receiver operating characteristics (ROC)curve, and decision curve analysis were performed to evaluate the nomogram. The secondary outcome was 30-day mortality and major adverse kidney events within 30 days (MAKE30). MAKE30 were a composite of death, new renal replacement therapy (RRT), or persistent renal dysfunction (PRD).
The independent predictors for nomogram construction were mean arterial pressure (MAP), serum procalcitonin (PCT), and platelet (PLT), prothrombin time activity (PTA), albumin globulin ratio (AGR), and creatinine (Cr). The predictive model had satisfactory discrimination with an area under the curve (AUC) of 0.852-0.858 in the training and validation cohorts, respectively. The nomogram showed good calibration and clinical application according to the calibration curve and decision curve analysis. Furthermore, the prediction model had perfect predictive power for predicting 30-day mortality (AUC = 0.813) and MAKE30 (AUC = 0.823) in elderly sepsis patients.
The proposed nomogram can quickly and effectively predict S-AKI risk in elderly sepsis patients within 24 h after admission, providing information for clinicians to make personalized interventions.
Xin Q
,Xie T
,Chen R
,Wang H
,Zhang X
,Wang S
,Liu C
,Zhang J
... -
《-》
Development and validation of a nomogram model for predicting 28-day mortality in patients with sepsis.
This study aimed to develop and validate a nomogram model for predicting 28-day mortality in patients with sepsis in the intensive care unit (ICU).
We retrospectively analyzed data from 331 patients with sepsis admitted to the ICU as a training set and collected a validation set of 120 patients. Both groups were followed for 28 days. Logistic regression analyses were performed to identify the potential prognostic factors for sepsis-related 28-day mortality. A nomogram model was generated to predict 28-day mortality in patients with sepsis in the ICU. Receiver operating characteristic (ROC) curve analysis, calibration curves, and decision curve analysis (DCA) were used to evaluate the model's prediction performance and clinical application. In addition, we used ROC curve analysis and DCA to compare this model with the sequential organ failure assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE II) scores and further assessed the clinical value of our model.
Logistic multivariate regression analysis revealed that mechanical ventilation, oxygenation index, and lactate and blood urea nitrogen (BUN) levels were independent predictors of 28-day mortality in patients with sepsis in the ICU. We developed a nomogram model based on these results to further predict 28-day mortality. The model demonstrated satisfactory calibration curves for both training and validation sets. Additionally, in the training set, the area under the ROC curve (AUC) for this model was 0.80. In the validation set, the AUC was 0.82. DCA showed that the high-risk thresholds ranged between 0 and 0.86 in the training set and between 0 and 0.75 in the validation set. We compared the ROC curve and DCA of this model with those of SOFA and APACHE II scores in both the training and validation sets. In the training set, the AUC of this model was significantly higher than those of the SOFA (P = 0.032) and APACHE II (P = 0.004) scores. Although the validation set showed a similar trend, the differences were not statistically significant for the SOFA (P = 0.273) and APACHE II (P = 0.320) scores. Additionally, the DCA showed comparable clinical utility in all three assessments.
The present study used four common clinical variables, including mechanical ventilation, oxygenation index and lactate and BUN levels, to develop a nomogram model to predict 28-day mortality in patients with sepsis in the ICU. Our model demonstrated robust prediction performance and clinical application after validation and comparison.
Wang X
,Li S
,Cao Q
,Chang J
,Pan J
,Wang Q
,Wang N
... -
《Heliyon》