Mixture effects of trace element levels on cardiovascular diseases and type 2 diabetes risk in adults using G-computation analysis.
There is an increasing concern about the health effects of exposure to a mixture of pollutants. This study aimed to evaluate the associations between serum levels of heavy/essential metals ([Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Iron (Fe), and Zinc (Zn)]) and the risk of developing cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2D). Data were collected from 450 participants (150 with CVDs, 150 with T2D, and 150 healthy subjects) randomly selected from the Ravansar Non-Communicable Disease (RaNCD) cohort in Western Iran, covering the years 2018-2023. Trace element levels in the serum samples were assayed using ICP-MS. Logistic regression was performed to estimate the adjusted risk of exposure to single and multi-metals and CVD/T2D. Odds ratios were adjusted for age, sex, education, residential areas, hypertension, and BMI. The mixture effect of exposure to multi-metals and CVD/T2D was obtained using Quantile G-computation (QGC). In the logistic regression model, chromium, nickel, and zinc levels were associated with CVD, and significant trends were observed for these chemical quartiles (P < 0.001). Arsenic, chromium, and copper levels were also associated with T2D. The weight quartile sum (WQS) index was significantly associated with both CVD (OR 4.17, 95% CI 2.16-7.69) and T2D (OR 11.96, 95% CI 5.65-18.26). Cd, Pb, and Ni were the most heavily weighed chemicals in these models.The Cd had the highest weight among the metals in the CVD model (weighted at 0.78), followed by Hg weighted at 0.197. For T2D, the serum Pb (weighted at 0.32), Ni (weighted at 0.19), Cr (weighted at 0.17), and Cd (weighted at 0.14) were the most weighted in the G-computation model. The results showed the significant role of toxic and essential elements in CVDs and T2D risk. This association may be driven primarily by cadmium and mercury for CVDs and Pb, Ni, Cr, and Cd for T2D, respectively. Prospective studies with higher sample sizes are necessary to confirm or refute our preliminary results as well as to determine other important elements.
Mansouri B
,Rezaei A
,Sharafi K
,Azadi N
,Pirsaheb M
,Rezaei M
,Nakhaee S
... -
《Scientific Reports》
Comparison and Risk Assessment of Macroelements and Trace Metals in Commercial Teas from Different Regions of China.
Tea (Camellia sinensis L.) is one of the most widely consumed non-alcoholic beverages worldwide. In the present study, 73 commercial tea samples were collected from tea plantations in the Southwest, South, Jiangnan, and Jiangbei regions of China. The contents of four macroelements (phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) and 15 trace metals (arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), zinc (Zn), aluminium (Al), copper (Cu), manganese (Mn), iron (Fe), nickel (Ni), thorium (Th), thallium (Tl), rubidium (Rb) and barium (Ba)) in tea samples were determined. The mean concentrations of As, Cd, Cr, Hg, Pb, Zn, Al, Cu, Mn, Fe, Ni, Th, Tl, Rb and Ba were in the range of 0.02-0.61, 0.008-0.126, 0.09-1.12, 0.001-0.012, 0.07-1.62, 19.5-73.2, 170-2100, 5.9-43.3, 228-2040, 60-337, 2.09-17.95, 0.002-0.08, 0.004-0.409, 0-150.50 and 3.1-41.2 µg/g, respectively, which were all lower than the maximum permissible limits stipulated by China (NY/T 288-2012, NY 659-2003). The target hazard quotients of each heavy metal were lower than one, and the combined risk hazard index of all heavy metals for adults was in the range of 0.10-0.85; therefore, there was no significant carcinogenic health risks to tea drinking consumers under the current dietary intake. Significant differences were found in the content of trace elements (Zn, Cu, Fe, Ni, Th, Tl, Rb and Ba) (p < 0.05); however, no significant differences were found in the content of macroelements (P, K, Ca and Mg) and trace metals (As, Cd, Cr, Hg, Pb, Al and Mn) in teas from different regions. Therefore, the region did not affect the heavy metal exposure risk. Correlation coefficient and principal component analyses were performed to determine the source of the elements. Three principal factors were obtained: factor 1 was positively related to Ca, Mg, As, Cd, Cr, Hg, Pb, Al, Mn, Fe and Th (32.63%); factor 2 to P, Zn, Cu and Ni (18.64%) and factor 3 to K and Rb (10.10%). Thus, the elements in the same factor might originate from the same source. This study provides an essential basis to understand the variance and potential risks of different elements in tea from different regions of China.
Li F
,Jing M
,Ma F
,Wang W
,Li M
... -
《-》
The association between trace metals in both cancerous and non-cancerous tissues with the risk of liver and gastric cancer progression in northwest China.
Liver cancer and gastric cancer have extremely high morbidity and mortality rates worldwide. It is well known that an increase or decrease in trace metals may be associated with the formation and development of a variety of diseases, including cancer. Therefore, this study aimed to evaluate the contents of aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in cancerous liver and gastric tissues, compared to adjacent healthy tissues, and to investigate the relationship between trace metals and cancer progression. During surgery, multiple samples were taken from the cancerous and adjacent healthy tissues of patients with liver and gastric cancer, and trace metal levels within these samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS). We found that concentrations of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn in tissues from patients with liver cancer were significantly lower than those in healthy controls (P < 0.05). Similarly, patients with gastric cancer also showed lower levels of Cd, Co, Cr, Mn, Ni, and Zn-but higher levels of Cu and Se-compared to the controls (P < 0.05). In addition, patients with liver and gastric cancers who had poorly differentiated tumours and positive lymph node metastases showed lower levels of trace metals (P < 0.05), although no significant changes in their concentrations were observed to correlate with sex, age, or body mass index (BMI). Logistic regression, principal component analysis (PCA), Bayesian kernel regression (BKMR), weighted quantile sum (WQS) regression, and quantile-based g computing (qgcomp) models were used to analyse the relationships between trace metal concentrations in liver and gastric cancer tissues and the progression of these cancers. We found that single or mixed trace metal levels were negatively associated with poor differentiation and lymph node metastasis in both liver and gastric cancer, and the posterior inclusion probability (PIP) of each metal showed that Cd contributed the most to poor differentiation and lymph node metastasis in both liver and gastric cancer (all PIP = 1.000). These data help to clarify the relationship between changes in trace metal levels in cancerous liver and gastric tissues and the progression of these cancers. Further research is warranted, however, to fully elucidate the mechanisms and causations underlying these findings.
Yan J
,Zhang H
,Zhang M
,Tian M
,Nie G
,Xie D
,Zhu X
,Li X
... -
《-》