Hypoxia-informed RBE-weighted beam orientation optimization for intensity modulated proton therapy.

来自 PUBMED

作者:

Ramesh PRuan DLiu SJSeo YBraunstein SSheng K

展开

摘要:

Variable relative biological effectiveness (RBE) models in treatment planning have been proposed to optimize the therapeutic ratio of proton therapy. It has been reported that proton RBE decreases with increasing tumor oxygen level, offering an opportunity to address hypoxia-related radioresistance with RBE-weighted optimization. Here, we obtain a voxel-level estimation of partial oxygen pressure to weigh RBE values in a single biologically informed beam orientation optimization (BOO) algorithm. Three glioblastoma patients with [18 F]-fluoromisonidazole (FMISO)-PET/CT images were selected from the institutional database. Oxygen values were derived from tracer uptake using a nonlinear least squares curve fitting. McNamara RBE, calculated from proton dose, was then weighed using oxygen enhancement ratios (OER) for each voxel and incorporated into the dose fidelity term of the BOO algorithm. The nonlinear optimization problem was solved using a split-Bregman approach, with FISTA as the solver. The proposed hypoxia informed RBE-weighted method (HypRBE) was compared to dose fidelity terms using the constant RBE of 1.1 (cRBE) and the normoxic McNamara RBE model (RegRBE). Tumor homogeneity index (HI), maximum biological dose (Dmax), and D95%, as well as OAR therapeutic index (TI = gEUDCTV /gEUDOAR ) were evaluated along with worst-case statistics after normalization to normal tissue isotoxicity. Compared to [cRBE, RegRBE], HypRBE increased tumor HI, Dmax, and D95% across all plans by on average [31.3%, 31.8%], [48.6%, 27.1%], and [50.4%, 23.8%], respectively. In the worst-case scenario, the parameters increase on average by [12.5%, 14.7%], [7.3%,-8.9%], and [22.3%, 2.1%]. Despite increased OAR Dmean and Dmax by [8.0%, 3.0%] and [13.1%, -0.1%], HypRBE increased average TI by [22.0%, 21.1%]. Worst-case OAR Dmean, Dmax, and TI worsened by [17.9%, 4.3%], [24.5%, -1.2%], and [9.6%, 10.5%], but in the best cases, HypRBE escalates tumor coverage significantly without compromising OAR dose, increasing the therapeutic ratio. We have developed an optimization algorithm whose dose fidelity term accounts for hypoxia-informed RBE values. We have shown that HypRBE selects bE:\Alok\aaeams better suited to deliver high physical dose to low RBE, hypoxic tumor regions while sparing the radiosensitive normal tissue.

收起

展开

DOI:

10.1002/mp.16978

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(72)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读