A unified path seeking algorithm for IMRT and IMPT beam orientation optimization.

来自 PUBMED

作者:

Ramesh PValdes GO'Connor DSheng K

展开

摘要:

Objective. Fully automated beam orientation optimization (BOO) for intensity-modulated radiotherapy and intensity modulated proton therapy (IMPT) is gaining interest, since achieving optimal plan quality for an unknown number of fixed beam arrangements is tedious. Fast group sparsity-based optimization methods have been proposed to find the optimal orientation, but manual tuning is required to eliminate the exact number of beams from a large candidate set. Here, we introduce a fast, automated gradient descent-based path-seeking algorithm (PathGD), which performs fluence map optimization for sequentially added beams, to visualize the dosimetric benefit of one added field at a time.Approach. Several configurations of 2-4 proton and 5-15 photon beams were selected for three head-and-neck patients using PathGD, which was compared to group sparsity-regularized BOO solved with the fast iterative shrinkage-thresholding algorithm (GS-FISTA), and manually selected IMPT beams or one coplanar photon VMAT arc (MAN). Once beams were chosen, all plans were compared on computational efficiency, dosimetry, and for proton plans, robustness.Main results. With each added proton beam, Clinical Target Volume (CTV) and organs at risk (OAR) dosimetric cost improved on average across plans by [1.1%, 13.6%], and for photons, [0.6%, 2.0%]. Comparing algorithms, beam selection for PathGD was faster than GS-FISTA on average by 35%, and PathGD matched the CTV coverage of GS-FISTA plans while reducing OAR mean and maximum dose in all structures by an average of 13.6%. PathGD was able to improve CTV [Dmax, D95%] by [2.6%, 5.2%] and reduced worst-case [max, mean] dose in OARs by [11.1%, 13.1%].Significance. The benefit of a path-seeking algorithm is the beam-by-beam analysis of dosimetric cost. PathGD was shown to be most efficient and dosimetrically desirable amongst group sparsity and manual BOO methods, and highlights the sensitivity of beam addition for IMPT in particular.

收起

展开

DOI:

10.1088/1361-6560/acf63f

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读