Protective effect of the total flavonoids from Clinopodium chinense against LPS-induced mice endometritis by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is a Chinese herbal medicine used in treating gynecological hemorrhagic diseases for hundreds of years. Flavonoids are one kind of the major components in C. chinense. The flavonoids of C. chinense (TFC) have a vital role in treating endometritis but the underlying therapeutic mechanisms of TFC against endometritis have been rarely reported.
To elucidate the therapeutic effect and possible mechanisms of TFC against lipopolysaccharide (LPS)-induced endometritis in vivo and LPS-induced primary mouse endometrial epithelial cells (MEECs) injury in vitro.
The holistic phytochemicals of the TFC and TFC-contained serum were screened and identified using UPLC-Q-TOF-MS. The model of endometritis was established by intrauterine injection of LPS (5 mg/mL) into female BALB/c mice, and the model mice were treated with TFC for 7 days. The value of MPO was measured by Myeloperoxidase assay kit, the pathological changes in the endometrium were evaluated using H&E staining and transmission electron microscope (TEM), the secretions of IL-18, IL-1β and TNF-α were determined by ELISA kits, the mRNA expressions of IL-18, IL-1β and TNF-α were determined by RT-PCR assay, and the protein levels of TLR4, IKBα, p-IKBα, p65, p-p65, caspase-1, ASC, NLRP3 and GSDMD were measured by Western blot. Subsequently, MEECs were isolated from the uterus of pregnant female mice, injured by LPS for 24 h and incubated with the TFC-contained serum. Finally, cell viability, LDH release, hoechst 33342/PI staining, immunofluorescence staining, scanning electron microscope observation, ELISA assay, RT-PCR detection and Western blot analysis were carried out to further validate the therapeutic effect and the underlying mechanisms of TFC.
A total of 6 compounds in the plasma of mice after being intragastric administrated of TFC were identified. The results in vivo showed that TFC significantly reduced MPO value and alleviated pathological injury of the endometrium. Furthermore, TFC significantly decreased the serum IL-18, IL-1β and TNF-α levels, and the mRNA levels of IL-18, IL-1β and TNF-α. TFC also inhibited the expressions of TLR4, p-IKBα, p-p65, caspase-1, ASC, NLRP3 and GSDMD. Besides, compared with the model group in MEECs cells, TFC-contained serum prevented pyroptosis, decreased the levels of IL-18 and IL-1β, and inhibited the mRNA expressions of IL-18, IL-1β and GSDMD. TFC-contained serum also reversed the activation of NLRP3 inflammasome caused by nigericin, and restrainted the translocation of NF-κB into nuclear.
TFC protects mice endometritis from the injury of LPS via suppressing the activation of NLRP3 inflammasome and pyroptosis, the underlying mechanisms of which were related to restraining the TLR4/NF-κB/NLRP3 pathway activation.
Li L
,Qi J
,Tao H
,Wang L
,Wang L
,Wang N
,Huang Q
... -
《-》
Platelet rich plasma alleviates endometritis induced by lipopolysaccharide in mice via inhibiting TLR4/NF-κB signaling pathway.
Endometritis is an inflammatory reaction of the lining of uterus, leading to the occurrence of infertility. Platelet rich plasma (PRP) has been proven to exhibit extremely effective for the treatment of endometrium-associated infertility, but the mechanism of its prevention for endometritis remains unclear.
The present study aimed to investigate the protective effect of PRP against endometritis induced by lipopolysaccharide (LPS) and elucidate the mechanism underlying these effects.
Mouse model of endometritis was established by intrauterine perfusion of LPS. PRP intrauterine infusion was administered at 24 h after LPS induction. After another 24 h, the uterine tissues were harvested to observe histopathological changes, production of proinflammatory cytokines, variation of the Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathways, and validated the anti-inflammatory effect of PRP. The myeloperoxidase (MPO) activity and concentration of nitric oxide (NO) were determined using assay kit. Proinflammatory chemokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6)) were measured by ELISA and Real-Time PCR. The activity of TLR4/NF-κB pathway in uterine tissues was measured by Western blotting.
Hematoxylin-eosin staining (H&E) appeared that PRP remarkably relieved the impairment of uterine tissues. Detection of MPO activity and concentration of NO revealed that PRP treatment distinctly mitigated infiltration of inflammatory cells in mice with endometritis induced by LPS. PRP treatment significantly affected the expression of TNF-α, IL-1β, and IL-6. PRP was also found to suppress LPS-induced activation of TLR4/NF-κB pathway.
PRP effectively alleviates LPS-induced endometritis via restraining the signal pathway of TLR4/NF-κB. These findings provide a solid foundation for PRP as a potential therapeutic agent for endometritis.
Liu X
,Wang Y
,Wen X
,Hao C
,Ma J
,Yan L
... -
《-》