Protective effect of the total flavonoids from Clinopodium chinense against LPS-induced mice endometritis by inhibiting NLRP3 inflammasome-mediated pyroptosis.
Clinopodium chinense (Benth.) O. Kuntze (C. chinense) is a Chinese herbal medicine used in treating gynecological hemorrhagic diseases for hundreds of years. Flavonoids are one kind of the major components in C. chinense. The flavonoids of C. chinense (TFC) have a vital role in treating endometritis but the underlying therapeutic mechanisms of TFC against endometritis have been rarely reported.
To elucidate the therapeutic effect and possible mechanisms of TFC against lipopolysaccharide (LPS)-induced endometritis in vivo and LPS-induced primary mouse endometrial epithelial cells (MEECs) injury in vitro.
The holistic phytochemicals of the TFC and TFC-contained serum were screened and identified using UPLC-Q-TOF-MS. The model of endometritis was established by intrauterine injection of LPS (5 mg/mL) into female BALB/c mice, and the model mice were treated with TFC for 7 days. The value of MPO was measured by Myeloperoxidase assay kit, the pathological changes in the endometrium were evaluated using H&E staining and transmission electron microscope (TEM), the secretions of IL-18, IL-1β and TNF-α were determined by ELISA kits, the mRNA expressions of IL-18, IL-1β and TNF-α were determined by RT-PCR assay, and the protein levels of TLR4, IKBα, p-IKBα, p65, p-p65, caspase-1, ASC, NLRP3 and GSDMD were measured by Western blot. Subsequently, MEECs were isolated from the uterus of pregnant female mice, injured by LPS for 24 h and incubated with the TFC-contained serum. Finally, cell viability, LDH release, hoechst 33342/PI staining, immunofluorescence staining, scanning electron microscope observation, ELISA assay, RT-PCR detection and Western blot analysis were carried out to further validate the therapeutic effect and the underlying mechanisms of TFC.
A total of 6 compounds in the plasma of mice after being intragastric administrated of TFC were identified. The results in vivo showed that TFC significantly reduced MPO value and alleviated pathological injury of the endometrium. Furthermore, TFC significantly decreased the serum IL-18, IL-1β and TNF-α levels, and the mRNA levels of IL-18, IL-1β and TNF-α. TFC also inhibited the expressions of TLR4, p-IKBα, p-p65, caspase-1, ASC, NLRP3 and GSDMD. Besides, compared with the model group in MEECs cells, TFC-contained serum prevented pyroptosis, decreased the levels of IL-18 and IL-1β, and inhibited the mRNA expressions of IL-18, IL-1β and GSDMD. TFC-contained serum also reversed the activation of NLRP3 inflammasome caused by nigericin, and restrainted the translocation of NF-κB into nuclear.
TFC protects mice endometritis from the injury of LPS via suppressing the activation of NLRP3 inflammasome and pyroptosis, the underlying mechanisms of which were related to restraining the TLR4/NF-κB/NLRP3 pathway activation.
Li L
,Qi J
,Tao H
,Wang L
,Wang L
,Wang N
,Huang Q
... -
《-》
FuKe QianJin capsule alleviates endometritis via inhibiting inflammation and pyroptosis through modulating TLR4/ NF-κB /NLRP3 pathway.
Fuke Qianjin Capsule (FKC), a traditional Chinese medicine commonly employed for treating endometritis, lacks reported treatment mechanisms.
The aim of the present study was to explore the role and mechanism of FKC in lipopolysaccharide (LPS)-induced endometritis.
The main active ingredients of FKC were identified via high-performance liquid chromatography (HPLC) in conjunction with standard substances. Prior to endometritis induction, Sprague Dawley female rats received FKC for 7 days. The endometritis model was established through an intrauterine injection of 1 mg/kg LPS. Concurrently, an LPS-induced RAW264.7 cell inflammation model was utilized, in which the cells were treated with serum containing Fuke Qianjin Capsule. Pathological alterations in the endometrium were assessed via H&E staining and transmission electron microscopy (TEM). The contents of MPO in uterine tissues, and NO release in cells, along with the secretion of IL-18, IL-1β, IL-6, and TNF-α in both tissues and cells, were determined via assay kits. The mRNA levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β in uterine tissues and cells were analyzed via qPCR. The protein levels of TLR4, p65, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β in these samples were evaluated through Western blot analysis. Immunofluorescence was used to assess the protein levels of p-P65 and NLRP3 in uterine tissues and cells.
Five primary active components of FKC were identified. Treatment with FKC in vivo mitigated endometrial pathological damage and significantly decreased the levels of MPO, IL-18, IL-1β, IL-6, and TNF-α, as well as the levels of Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA in tissue samples. Treatment with FKC inhibited the expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β, as well as reduced NLRP3 protein fluorescence intensity, and inhibited P65 phosphorylation. In vitro findings demonstrated that FKC-containing serum reduced IL-18, IL-1β, IL-6, and TNF-α levels, as well as reduced Nlrp3, Caspase-1, Gsdmd, and Il-1β mRNA levels. In addition, FKC-containing serum inhibited the protein expression of TLR4, p-P65, NLRP3, Caspase-1, GSDMD, and IL-1β. FKC-containing serum also reduced NLRP3 protein fluorescence intensity and suppressed P65 phosphorylation.
FKC reverses the LPS induced NLRP3 inflammasome activation, and mitigates inflammation and pyroptosis through the modulation of the TLR4/NF-κB/NLRP3 pathway, thereby alleviating endometritis.
Xiong S
,Xu C
,Yang C
,Luo H
,Xie J
,Xia B
,Zhang Z
,Liao Y
,Li C
,Li Y
,Lin L
... -
《-》
Conciliatory Anti-Allergic Decoction Attenuates Pyroptosis in RSV-Infected Asthmatic Mice and Lipopolysaccharide (LPS)-Induced 16HBE Cells by Inhibiting TLR3/NLRP3/NF-κB/IRF3 Signaling Pathway.
Respiratory syncytial virus (RSV) infection can deteriorate asthma by inducing persistent airway inflammation. Increasing evidence elucidated that pyroptosis plays a pivotal role in asthma. Conciliatory anti-allergic decoction (CAD) exhibits an anti-inflammatory effect in ovalbumin (OVA)-induced asthma; however, the effects and mechanisms of CAD in RSV-infected asthmatic mice have not yet been elucidated. The RSV-infected asthmatic mice model and lipopolysaccharide (LPS)-induced 16HBE cell pyroptosis model were established, respectively. Pulmonary function, ELISA, and histopathologic analysis were performed to assess the airway inflammation and remodeling in mice with CAD treatment. Furthermore, ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was conducted to identify the chemical compounds of high-dose CAD (30 g/kg). Cell viability and apoptosis of 16HBE cells were assessed by CCK-8 and flow cytometry assays, respectively. Finally, the expression levels of apoptosis-, pyroptosis-, and TLR3/NLRP3/NF-κB/IRF3 signaling-related genes were measured with qRT-PCR or western blotting, respectively. Pulmonary function tests showed that CAD significantly ameliorated respiratory dysfunction, airway hyperresponsiveness, inflammation cell recruitment in BALF, pulmonary inflammation, collagen deposition, and cell death in lung tissues. CAD significantly decreased the content of TNF-α, IL-13, IL-4, IL-1β and IL-5 in the bronchoalveolar lavage fluid (BALF), IL-17, IL-6, and OVA-specific IgE in serum and increased serum IFN-γ in asthma mice. The results of UPLC-Q-TOF/MS showed that high-dose CAD had 88 kinds of chemical components. In vitro, CAD-contained serum significantly suppressed LPS-induced 16HBE cell apoptosis. Additionally, CAD and CAD-contained serum attenuated the up-regulated expressions of Bax, Cleaved caspase-3, NLRP3, ASC, Cleaved caspase-1, GSDMD-N, IL-18, IL-1β, TLR3, p-P65, p-IκBα, and IRF3 but increased Bcl-1 and GSDMD levels in the asthma mice and LPS-induced 16HBE cells, respectively. These results illustrated that CAD may have a potential role in improving airway inflammation and pyroptosis through inhibition of the TLR3/NLRP3/NF-κB/IRF3 signaling pathway.
Chen YQ
,Zhou Y
,Wang QL
,Chen J
,Chen H
,Xie HH
,Li L
... -
《-》