Ethical considerations for artificial intelligence in dermatology: a scoping review.
The field of dermatology is experiencing the rapid deployment of artificial intelligence (AI), from mobile applications (apps) for skin cancer detection to large language models like ChatGPT that can answer generalist or specialist questions about skin diagnoses. With these new applications, ethical concerns have emerged. In this scoping review, we aimed to identify the applications of AI to the field of dermatology and to understand their ethical implications. We used a multifaceted search approach, searching PubMed, MEDLINE, Cochrane Library and Google Scholar for primary literature, following the PRISMA Extension for Scoping Reviews guidance. Our advanced query included terms related to dermatology, AI and ethical considerations. Our search yielded 202 papers. After initial screening, 68 studies were included. Thirty-two were related to clinical image analysis and raised ethical concerns for misdiagnosis, data security, privacy violations and replacement of dermatologist jobs. Seventeen discussed limited skin of colour representation in datasets leading to potential misdiagnosis in the general population. Nine articles about teledermatology raised ethical concerns, including the exacerbation of health disparities, lack of standardized regulations, informed consent for AI use and privacy challenges. Seven addressed inaccuracies in the responses of large language models. Seven examined attitudes toward and trust in AI, with most patients requesting supplemental assessment by a physician to ensure reliability and accountability. Benefits of AI integration into clinical practice include increased patient access, improved clinical decision-making, efficiency and many others. However, safeguards must be put in place to ensure the ethical application of AI.
Gordon ER
,Trager MH
,Kontos D
,Weng C
,Geskin LJ
,Dugdale LS
,Samie FH
... -
《-》
The Medicine Revolution Through Artificial Intelligence: Ethical Challenges of Machine Learning Algorithms in Decision-Making.
The integration of artificial intelligence (AI) and its autonomous learning processes (or machine learning) in medicine has revolutionized the global health landscape, providing faster and more accurate diagnoses, personalization of medical treatment, and efficient management of clinical information. However, this transformation is not without ethical challenges, which require a comprehensive and responsible approach. There are many fields where AI and medicine intersect, such as health education, patient-doctor interface, data management, diagnosis, intervention, and decision-making processes. For some of these fields, there are some guidelines to regulate them. AI has numerous applications in medicine, including medical imaging analysis, diagnosis, predictive analytics for patient outcomes, drug discovery and development, virtual health assistants, and remote patient monitoring. It is also used in robotic surgery, clinical decision support systems, AI-powered chatbots for triage, administrative workflow automation, and treatment recommendations. Despite numerous applications, there are several problems related to the use of AI identified in the literature in general and in medicine in particular. These problems are data privacy and security, bias and discrimination, lack of transparency (Black Box Problem), integration with existing systems, cost and accessibility disparities, risk of overconfidence in AI, technical limitations, accountability for AI errors, algorithmic interpretability, data standardization issues, unemployment, and challenges in clinical validation. Of the various problems already identified, the most worrying are data bias, the black box phenomenon, questions about data privacy, responsibility for decision-making, security issues for the human species, and technological unemployment. There are still several ethical problems associated with the use of AI autonomous learning algorithms, namely epistemic, normative, and comprehensive ethical problems (overarching). Addressing all these issues is crucial to ensure that the use of AI in healthcare is implemented ethically and responsibly, providing benefits to populations without compromising fundamental values. Ongoing dialogue between healthcare providers and the industry, the establishment of ethical guidelines and regulations, and considering not only current ethical dilemmas but also future perspectives are fundamental points for the application of AI to medical practice. The purpose of this review is to discuss the ethical issues of AI algorithms used mainly in data management, diagnosis, intervention, and decision-making processes.
Marques M
,Almeida A
,Pereira H
《Cureus》
Ethics of artificial intelligence in dermatology.
The integration of artificial intelligence (AI) in dermatology holds promise for enhancing clinical accuracy, enabling earlier detection of skin malignancies, suggesting potential management of skin lesions and eruptions, and promoting improved continuity of care. AI implementation in dermatology, however, raises several ethical concerns. This review explores the current benefits and challenges associated with AI integration, underscoring ethical considerations related to autonomy, informed consent, and privacy. We also examine the ways in which beneficence, nonmaleficence, and distributive justice may be impacted. Clarifying the role of AI, striking a balance between security and transparency, fostering open dialogue with our patients, collaborating with developers of AI, implementing educational initiatives for dermatologists and their patients, and participating in the establishment of regulatory guidelines are essential to navigating ethical and responsible AI incorporation into dermatology.
Chen M
,Zhou AE
,Jain N
,Gronbeck C
,Feng H
,Grant-Kels JM
... -
《-》