-
A 10-year follow-up of reproductive outcomes in women attempting motherhood after elective oocyte cryopreservation.
Loreti S
,Darici E
,Nekkebroeck J
,Drakopoulos P
,Van Landuyt L
,De Munck N
,Tournaye H
,De Vos M
... -
《-》
-
The number of oocytes associated with maximum cumulative live birth rates per aspiration depends on female age: a population study of 221 221 treatment cycles.
What is the number of oocytes where the maximum cumulative live birth rate per aspiration (CLBR) is observed during ART in women of different ages?
The maximum CLBR was observed when around 25 oocytes were retrieved in women between 18-35 years of age, around 9 oocytes in women more than 45 years of age and continued to increase beyond 30 oocytes in women between 36-44 years of age.
The live birth rate per fresh or frozen/thaw embryo transfer (FET) procedure has traditionally been the main measure of ART success. However, with the introduction of highly efficient embryo cryopreservation methods, CLBR encompassing live delivery outcomes from the fresh and all subsequent FET following a single ovarian stimulation and oocyte collection is increasingly viewed as a more meaningful measure of treatment success. There is evidence suggesting that larger oocyte yields are associated with increased likelihood of cumulative live birth per aspiration. Whether this association is the same across female ages has not yet been properly investigated.
This is a large retrospective population-based cohort study using data from the Australian and New Zealand Assisted Reproduction Database (ANZARD). ANZARD contains information from all ART treatment cycles carried out in all fertility centres in Australia and New Zealand. Overall, 221 221 autologous oocyte aspiration cycles carried out between January 2009 to December 2015 were included in the analysis.
Cumulative live birth per aspiration was defined as at least one liveborn baby at ≥20 weeks gestation resulting from an ART aspiration cycle, including all fresh and FET resulting from the associated ovarian stimulation, until one live birth occurred or all embryos were used. Cycles where no oocytes were retrieved were excluded from analysis as there is no possibility of live birth. Analyses of data were performed using generalized estimating equations to account for the clustered nature of data (multiple cycles undertaken by a woman). Univariate and multivariable regression analysis was performed to identify and adjust for factors known to independently affect cumulative live birth per aspiration. An interaction term between female age and the number of oocytes retrieved was included to assess whether the age of the women was associated with a different optimal number of oocytes to achieve at least one live birth from an aspiration cycle (i.e. the effect-modifying role of female age). The likelihood of cumulative live birth per aspiration was calculated as odds ratios (ORs) with 95% CI.
The median number of oocytes retrieved was 7 (interquartile range, 4-12) and median age of patients was 36 (interquartile range, 33-40). The overall CLBR was 32.2%. The results from the multivariable regression analysis showedthat the number of oocytes retrieved remained a significant predictor (P < 0.001) of cumulative live birth per aspiration after adjusting for female age, parity and cycle count. Compared to the reference group of 10-14 oocytes retrieved, the adjusted odds for cumulative live birth per aspiration increased with the number of oocytes retrieved: 1-3 oocytes, 0.21 (95% CI, 0.20-0.22); 4-9 oocytes, 0.56 (95% CI, 0.55-0.58); 15-19 oocytes, 1.38 (95% CI, 1.34-1.43); 20-24 oocytes, 1.75 (95% CI, 1.67-1.84); and 2.10 (95% CI, 1.96-2.25) with more than 25 oocytes. After stratifying by female age group, the rate of increase in CLBR per additional oocyte retrieved was lower in the older age groups, indicating that higher oocyte yields were more beneficial in younger women. CLBR of patients in the <30 years and 30-34 years age groups appeared to reach a plateau (with only minimal increase in CLBR per additional oocyte retrieved) after retrieval of 25 oocytes at 73% and 72%, respectively, while CLBR of patients in the 35-39 years and 40-44 years age groups continued to increase with higher oocyte yields, reaching 68% and 40%, respectively, when 30 or more oocytes were retrieved. CLBR of patients aged 45 years and above remained consistently below 5%. Findings suggest that the number of oocytes retrieved where CLBR appears to be maximized is around 25 in women between 18-35 years, more than 30 in women between 36-44 years and around 9 in women 45 years and older. However, results for women aged 45 years and older may not be as robust due to the relatively small sample size available in this age group.
As with all large retrospective database studies, there are potential confounders that cannot be accounted for. Despite the current study being based on complete ascertainment of ART cycles across two countries, ovarian stimulation protocols, oocyte quality parameters and a number of important patient characteristics are not collected by ANZARD. Additionally, a small number of cycles were available for women over 45 years yielding more than 15 oocytes, making these estimates unreliable.
The results from this study demonstrate that the number of oocytes retrieved where the maximum CLBR is observed during ART is dependent on female age. This provides information for clinicians and patients to understand the modifying effect of age on the number of oocytes retrieved and the likelihood of success with ART.
No external funding was used for this study. The Fertility Society of Australia funds the National Perinatal Epidemiology and Statistics Unit to manage ANZARD and conduct national reporting of ART in Australia and New Zealand. Associate Professor Georgina Chambers (G.C.) is employed by the University of New South Wales (UNSW) and is director of the National Perinatal Epidemiology and Statistics Unit at UNSW. G.C. was also a paid member of the Australian governments Medicare Benefits Scheme taskforce on assisted reproductive technologies in 2017.
Law YJ
,Zhang N
,Venetis CA
,Chambers GM
,Harris K
... -
《-》
-
Predicting the likelihood of live birth for elective oocyte cryopreservation: a counseling tool for physicians and patients.
Can a counseling tool be developed for women desiring elective oocyte cryopreservation to predict the likelihood of live birth based on age and number of oocytes frozen?
Using data from ICSI cycles of a population of women with uncompromised ovarian reserve, an evidence-based counseling tool was created to guide women and their physicians regarding the number of oocytes needed to freeze for future family-building goals.
Elective oocyte cryopreservation is increasing in popularity as more women delay family building. By undertaking elective oocyte freezing at a younger age, women hope to optimize their likelihood of successful live birth(s) using their thawed oocytes at a future date. Questions often arise in clinical practice regarding the number of cryopreserved oocytes sufficient to achieve live birth(s) and whether or not additional stimulation cycles are likely to result in a meaningful increase in the likelihood of live birth. As relatively few women who have electively cryopreserved oocytes have returned to use them, available data for counseling patients wishing to undergo fertility preservation are limited.
A model was developed to determine the proportion of mature oocytes that fertilize and then form blastocysts as a function of age, using women with presumably normal ovarian reserve based on standard testing who underwent ICSI cycles in our program from January, 2011 through March, 2015 (n = 520). These included couples diagnosed exclusively with male-factor and/or tubal-factor infertility, as well as cycles utilizing egg donation. Age-specific probabilities of euploidy were estimated from 14 500 PGS embryo results from an external testing laboratory. Assuming survival of thawed oocytes at 95% for women <36 y and for egg donors, and 85% for women ≥36 y, and 60% live birth rate per transferred euploid blastocyst, probabilities of having at least one, two or three live birth(s) were calculated.
First fresh male-factor and/or tubal-factor only autologous ICSI cycles (n = 466) were analyzed using Poisson regression to calculate the probability that a mature oocyte will become a blastocyst based on age. Egg donation cycles (n = 54) were analyzed and incorporated into the model separately. The proportion of blastocysts expected to be euploid was determined using PGS results of embryos analyzed via array comparative genomic hybridization. A counseling tool was developed to predict the likelihood of live birth, based on individual patient age and number of mature oocytes.
This study provides an evidence-based model to predict the probability of a woman having at least one, two or three live birth(s) based on her age at egg retrieval and the number of mature oocytes frozen. The model is derived from a surrogate population of ICSI patients with uncompromised ovarian reserve. A user-friendly counseling tool was designed using the model to help guide physicians and patients.
The data used to develop the prediction model are, of necessity, retrospective and not based on patients who have returned to use their cryopreserved oocytes. The assumptions used to create the model, albeit reasonable and data-driven, vary by study and will likely vary by center. Centers are therefore encouraged to consider their own blastocyst formation and thaw survival rates when counseling patients.
Our model will provide a counseling resource that may help inform women desiring elective fertility preservation regarding their likelihood of live birth(s), how many cycles to undergo, and when additional cycles would bring diminishing returns.
None.
Not applicable.
Goldman RH
,Racowsky C
,Farland LV
,Munné S
,Ribustello L
,Fox JH
... -
《-》
-
Cumulative live birth rates after one ART cycle including all subsequent frozen-thaw cycles in 1050 women: secondary outcome of an RCT comparing GnRH-antagonist and GnRH-agonist protocols.
Are cumulative live birth rates (CLBRs) similar in GnRH-antagonist and GnRH-agonist protocols for the first ART cycle including all subsequent frozen-thaw cycles from the same oocyte retrieval?
The chances of at least one live birth following utilization of all fresh and frozen embryos after the first ART cycle are similar in GnRH-antagonist and GnRH-agonist protocols.
Reproductive outcomes of ART treatment are traditionally reported as pregnancies per cycle or per embryo transfer. However, the primary concern is the overall chance of a live birth. After the first ART cycle with fresh embryo transfer, we found live birth rates (LBRs) of 22.8% and 23.8% (P = 0.70) for the GnRH-antagonist and GnRH-agonist protocols, respectively. But with CLBRs including both fresh and frozen embryos from the first oocyte retrieval, chances of at least one live birth increases. There are no previous randomized controlled trials (RCTs) comparing CLBRs in GnRH-antagonist versus GnRH-agonist protocols. Previous studies on CLBR are either retrospective cohort studies including multiple fresh cycles or RCTs comparing single embryo transfer (SET) with double embryo transfer (DET).
CLBR was a secondary outcome in a Phase IV, dual-center, open-label, RCT including 1050 women allocated to a short GnRH-antagonist or a long GnRH-agonist protocol in a 1:1 ratio over a 5-year period using a web-based concealed randomization code. The minimum follow-up time from the first IVF cycle was 2 years. The aim was to compare CLBR between the two groups following utilization of all fresh and frozen embryos from the first ART cycle.
All women referred for their first ART cycle at two public fertility clinics, <40 years of age were approached. A total of 1050 subjects were allocated to treatment and 1023 women started standardized ART protocols with recombinant human follitropin-β (rFSH) stimulation. Day-2 SET was planned and additional embryos were frozen and used in subsequent frozen-thawed cycles. All pregnancies generated from oocyte retrieval during the first IVF cycle including fresh and frozen-thaw cycles were registered. Ongoing pregnancy was determined by ultrasonography at gestational week 7-9 and live birth was irrespective of the duration of gestation. CLBR was defined as at least one live birth per allocated woman after fresh and frozen cycles. Subjects were censored out after the first live birth. Cox proportional hazard model was used to evaluate the relative prognostic significance of female age, BMI, the number of retrieved oocytes and the diagnosis of infertility in relation to the CLBR.
Baseline characteristics were similar and equal proportions of patients continued with frozen-thaw (frozen embryo transfer, FET) cycles after their fresh ART cycle in the GnRH-antagonist and GnRH-agonist arms. When combining all fresh and frozen-thaw embryo transfers from first oocyte retrieval with a minimum of 2-year follow-up, the CLBR was 34.1% (182/534) in the GnRH-antagonist group versus 31.2% (161/516) in the GnRH-agonist group (odds ratio (OR):1.14; 95% CI: 0.88-1.48, P = 0.32). Mean time to the first live birth was 11.0 months in the GnRH-antagonist group compared to 11.5 months in the GnRH-agonist group (P < 0.01). The total number of deliveries from all FET cycles where embryos were thawed were higher in the antagonist group 64/330 (19.4%) compared to the agonist group 43/355 (12.1%) ((OR): 1.74; 95% CI: 1.14-2.66, P = 0.01). The evaluation of prognostic factors showed that more retrieved oocytes were associated with a significantly higher CLBR in both treatment groups. For the subgroup of obese women (BMI >30 kg/m2), the CLBR was significantly higher in the GnRH-antagonist group (P = 0.02).
The duration of the trial is a possible limitation with introduction of new methods as 'Freeze all' and 'GnRH-agonist triggering', but as these treatments were used in only few women, a systematic bias is not likely. Blastocyst culture of surplus embryos for freezing was introduced to both groups simultaneously, thereby minimizing the risk of bias. Furthermore, with a minimum of 2-year follow-up, a minority (<1%) still had cryopreserved embryos and no live birth at the end of the trial. The post hoc prognostic covariate analyses with multiple strata should be interpreted with caution. Finally, the physicians were not blinded to GnRH treatment group after randomization.
With the improvement of embryo culture, freezing and thawing methods as well as a strategy of elective SET, CLBR until first live birth provides an all-inclusive success rate for ART. When comparing GnRH-antagonist and GnRH-agonist protocols, we find similar CLBRs, despite more oocytes being retrieved in the GnRH-agonist protocol.
An unrestricted research grant is funded by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA (MSD). The funders had no influence on the data collection, analyses or conclusions of the study. No conflict of interests to declare.
EudraCT #: 2008-005452-24. ClinicalTrial.gov: NCT00756028.
18 September 2008.
14 January 2009.
Toftager M
,Bogstad J
,Løssl K
,Prætorius L
,Zedeler A
,Bryndorf T
,Nilas L
,Pinborg A
... -
《-》
-
Combining fertility preservation procedures to spread the eggs across different baskets: a feasibility study.
What is the reproductive potential following combinations of ovarian stimulation, IVM and ovarian tissue cryopreservation (OTC) in female patients seeking fertility preservation (FP)?
In selected patients, combining different FP procedures is a feasible approach and reproductive outcomes after FP in patients who return to attempt pregnancy are promising.
FP is increasingly performed in fertility clinics but an algorithm to select the most suitable FP procedure according to patient characteristics and available timeframe is currently lacking. Vitrification of mature oocytes (OV) and OTC are most commonly performed, although in some clinical scenarios a combination of procedures including IVM, to spread the sources of gametes, may be considered in order to enhance reproductive options for the future.
Retrospective, observational study in a university-based, tertiary fertility centre involving all female patients who underwent urgent medical FP between January 2012 and December 2018. Descriptive analysis of various FP procedures, either stand-alone or combined, was performed, and reproductive outcomes of patients who attempted pregnancy in the follow-up period were recorded.
In total, 207 patients underwent medical FP. Patient-tailored strategies and procedures were selected after multidisciplinary discussion. When deemed feasible, FP procedures were combined to cryopreserve different types of reproductive tissue for future use. The main primary outcome measure was the number of mature oocytes. Live birth rates were evaluated in patients who returned for reproductive treatment.
Among patients seeking FP, 95/207 (46%) had breast cancer, 43/207 (21%) had haematological malignancies and 31/207 (15%) had a gynaecological tumour. Mean ± SD age was 27.0 ± 8.3 years. Eighty-five (41.1%) patients underwent controlled ovarian stimulation (COS), resulting in 10.8 ± 7.1 metaphase II (MII) oocytes for vitrification. Eleven (5.3%) patients had multiple COS cycles. Transvaginal oocyte retrieval for IVM was performed in 17 (8.2%) patients, yielding 9.2 ± 10.1 MII oocytes. Thirty-four (16.4%) patients underwent OTC combined with IVM of oocytes retrieved from ovarian tissue 'ex vivo' (OTO-IVM), yielding 4.0 ± 4.3 MII oocytes in addition to ovarian fragments. Seventeen (8.2%) patients had OTC combined with OTO-IVM and transvaginal retrieval of oocytes for IVM from the contralateral ovary, resulting in 13.5 ± 9.7 MII oocytes. In 13 (6.3%) patients, OTC with OTO-IVM was followed by controlled stimulation of the contralateral ovary, yielding 11.3 ± 6.6 MII oocytes in total. During the timeframe of the study, 31/207 (15%) patients have returned to the fertility clinic with a desire for pregnancy. Of those, 12 (38.7%) patients had preserved ovarian function and underwent ART treatment with fresh oocytes, resulting in nine (75%) livebirth. The remaining 19 (61.3%) patients requested warming of their cryopreserved material because of ovarian insufficiency. Of those, eight (42.1%) patients had a livebirth, of whom three after OTO-IVM. To date, 5/207 patients (2.4%) achieved an ongoing pregnancy or livebirth after spontaneous conception.
Our FP programme is based on a patient-tailored approach rather than based on an efficiency-driven algorithm. The data presented are descriptive, which precludes firm conclusions.
Combining different FP procedures is likely to enhance the reproductive fitness of patients undergoing gonadotoxic treatment but further follow-up studies are needed to confirm this.
No external funding was used for this study and the authors have no competing interests.
N/A.
Delattre S
,Segers I
,Van Moer E
,Drakopoulos P
,Mateizel I
,Enghels L
,Tournaye H
,De Vos M
... -
《-》