-
Detection of chromosome aberrations in 17 054 individuals with fertility problems and their subsequent assisted reproductive technology treatments in Central China.
How do the types and frequency of chromosome aberrations in couples in central China affect fertility and ART treatment?
Men with chromosome aberrations or polymorphisms have an increased risk of semen quality impairment and infertility, and couples affected by reciprocal translocations had a lower pregnancy rate compared with other chromosome aberrations.
Karyotyping is crucial for patients affected by infertility as chromosome aberrations play an important role in the etiology of male infertility. However, the influence of chromosome aberrations and polymorphisms on sperm motility and morphology remains controversial. Data on ART treatment outcomes in infertile couples affected by chromosome aberrations are insufficient.
We conducted a retrospective study involving 17 054 patients affected by infertility who underwent karyotyping in our center between January 2020 and May 2022.
Karyotyping was performed on 17 054 patients with reproductive failure. All patients were from the central regions of China. The following data were collected from a medical records system using patient identification numbers: couples' ages, history of pregnancy and childbirth, type of infertility, years of infertility, cause of infertility, chromosome karyotypes, semen analysis results, assisted reproductive techniques performed, and treatment outcomes of ART.
The incidence of chromosome aberrations was 2.04%; 2.49% in men and 1.57% in women. By analyzing the relationships between chromosome aberrations/polymorphisms and abnormal semen parameters, we found that there were significantly higher rates of asthenozoospermia, oligospermia, and teratozoospermia among men with Robertsonian translocations and sex chromosomal structural aberrations compared with those with normal karyotypes. Higher rates of asthenozoospermia and teratozoospermia were also observed among men with autosomal reciprocal translocations. The incidence of chromosome aberrations in azoospermic men (13.75%), and in men with cryptozoospermia or severe oligospermia (6.97%) was significantly higher than that in men with mild oligospermia or normospermia (0.88-2.12%). In addition, we found that the progressive movement of sperm is impaired in men with Chromosome 21 polymorphisms compared with men with normal karyotypes (39.46% ± 20.51% vs 48.61% ± 18.76%, P = 0.026). The percentage of morphologically normal forms was lower in the chromosomal polymorphism group than in the normal karyotype group (5.01% ± 2.41% vs 5.59% ± 2.14%, P = 0.001), especially in men with polymorphisms on Chromosome 9 (enlarged Chromosome 9 heterochromatin [9qh+]: 4.48% ± 2.22% vs 5.59% ± 2.14%, P = 0.006; pericentric inversion of Chromosome 9 [inv(9)]: 5.09% ± 3.11% vs 5.59% ± 2.14%, P = 0.008). ART treatment was successful in 36.00% of couples affected by chromosome aberrations. However, couples affected by reciprocal translocations achieved a lower pregnancy rate (24.07%), which may be due to the lower euploidy rates (27.31%) when compared with that in other chromosome aberrations.
First, although the initial cohort was large, chromosome aberrations were identified in a small number of patients. Second, the observational nature of the study design is limiting. Third, the couples affected by infertility in this study were all outpatients that did not undergo identical comprehensive examinations except for karyotyping, leading to the incomplete collection of medical records. Also, the population included in this study mainly focused on couples affected by infertility, which may not be included in the European Association of Urology (EAU) recommendation on male infertility.
Men with chromosome aberrations or polymorphisms have an increased risk of semen quality impairment and infertility. Constitutional chromosome analysis is recommended for men affected by infertility and severe oligospermia or azoospermia to facilitate early and appropriate guidance for the most suitable treatment. Carriers of chromosome aberrations can achieve acceptable pregnancy outcomes through IVF. However, couples affected by reciprocal translocations have lower pregnancy rates, and more treatment cycles are needed before a successful pregnancy. A possible explanation may be the fewer euploid embryos obtained.
This work was supported by Grant 2021YFC2700603 from the National Key Research & Development Program of China. The authors declare no conflicts of interest.
N/A.
Yuan J
,Jin L
,Wang M
,Wei S
,Zhu G
,Xu B
... -
《-》
-
Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough?
What thresholds for total sperm count, sperm concentration, progressive motility, and total progressive motile sperm count (TPMC) are associated with earlier time-to-conception in couples undergoing fertility evaluation?
Values well above the World Health Organization (WHO) references for total sperm count, concentration, and progressive motility, and values up to 100 million for TPMC were consistently associated with earlier time-to-conception and higher conception rates.
Although individual semen parameters are generally not able to distinguish between fertile and infertile men, they can provide clinically useful information on time-to-pregnancy for counseling patients seeking fertility treatment. Compared to the conventional semen parameters, TPMC might be a better index for evaluating the severity of male infertility.
We used data from a longitudinal cohort study on subfertile men from 2002 to 2017 and included 6061 men with initial semen analysis (SA) in the study.
Men from subfertile couples who underwent a SA within the study period were included, and 5-year follow-up data were collected to capture conception data. Couples were further categorized into two subgroups: natural conception (n = 5126), after separating those who achieved conception using ART or IUI; natural conception without major female factor (n = 3753), after separating those with severe female factor infertility diagnoses. TPMC was calculated by multiplying the semen volume (ml) by sperm concentration (million/ml) and the percentage of progressively motile sperm (%). Cox proportional hazard models were used to report hazard ratios (HRs) with 95% CIs before and after adjusting for male age, the number of previous children before the first SA, and income. Using the regression tree method, we calculated thresholds for total sperm count, sperm concentration, progressive motility, and TPMC to best differentiate those who were more likely to conceive within 5 years after first SA from those less likely to conceive. We also plotted continuous values of semen parameters in predicting 5-year conception rates and time-to-conception.
Overall, the median time to conception was 22 months (95% CI: 21-23). A total of 3957 (65%) couples were known to have achieved conception within 5 years of the first SA. These patients were younger and had higher values of sperm concentration, progressive motility, and TPMC. In the overall cohort, a TPMC of 50 million best differentiated men who were more likely to father a child within 5 years. Partners of men with TPMC ≥50 million had a 45% greater chance of conception within 5 years in the adjusted model (HR: 1.45; 95% CI: 1.34-1.58) and achieved pregnancy earlier compared to those men with TPMC < 50 million (median 19 months (95% CI: 18-20) versus 36 months (95% CI: 32-41)). Similar results were observed in the natural conception cohort. For the natural conception cohort without major female factor, the TPMC cut-off was 20 million. In the visual assessment of the graphs for the continuous semen parameter values, 5-year conception rates and time-to-conception consistently plateaued at higher values of sperm concentration, total sperm count, progressive motility, and TPMC compared to the WHO reference levels and our calculated thresholds. For TPMC, values up to 100-150 million were still associated with a better conception rate and time-to-conception in the visual assessment of the curves.
There was limited information on female partners and potential for inaccuracies in capturing less severe female infertility diagnoses. Also we lacked details on assisted pregnancies achieved outside of our healthcare network (with possible miscoding as 'natural conception' in our cohort). We only used the initial SA and sperm morphology, another potentially important parameter, was not included in the analyses. We had no information on continuity of pregnancy attempts/intention, which could affect the time-to-conception data. Finally, most couples had been attempting conception for >12 months prior to initiating fertility treatment, so it is likely that we are underestimating time to conception. Importantly, our data might lack the generalizability to other populations.
Our results suggest that a TPMC threshold of 50 million sperm provided the best predictive power to estimate earlier time-to-conception in couples evaluated for male factor infertility. Higher values of sperm count, concentration and progressive motility beyond the WHO references were still associated with better conception rates and time-to-conception. This provides an opportunity to optimize semen parameters in those with semen values that are low but not abnormal according to the WHO reference values. These data can be used to better inform patients regarding their chances of conception per year when SA results are used for patient counseling.
None.
N/A.
Keihani S
,Verrilli LE
,Zhang C
,Presson AP
,Hanson HA
,Pastuszak AW
,Johnstone EB
,Hotaling JM
... -
《-》
-
Preimplantation genetic testing is not a preferred recommendation for patients with X chromosome abnormalities.
Should women with X chromosome abnormalities (XCAs) be recommended to have embryos selected by both morphological and cytogenetic assessment through preimplantation genetic testing (PGT) rather than morphological assessment only in conventional IVF/ICSI treatment?
PGT is not a preferred recommendation for women with XCAs in the absence of other PGT indications.
XCAs are the most frequent sort of chromosomal aberrations in infertile women. Patients with a complete or partial absence of one X chromosome, diagnosed as Turner Syndrome (TS), demonstrate low spontaneous pregnancy rates (5-7%) and high miscarriage rates (22.8-30.8%), as well as high chances of birth defects (20%). PGT is known to improve pregnancy rates and decrease the incidence of miscarriage in couples with chromosomal aberrations such as Robertsonian and reciprocal translocations and Klinefelter Syndrome.
A retrospective cohort study was conducted with 394 women with XCAs and undergoing their first oocyte retrieval and first embryo transfer cycle from June 2011 to August 2019 in the Reproductive Hospital Affiliated to Shandong University.
Pregnancy outcomes were compared between the conventional IVF/ICSI group (n = 284) and the PGT group (n = 110) in the first fresh or frozen embryo transfer cycle for each woman with XCAs. Three platforms were applied in PGT: fluorescence in situ hybridisation (FISH, n = 34), array comparative genomic hybridisation (aCGH, n = 24) and next-generation sequencing (NGS, n = 51). The embryo aneuploidy rate and distribution of embryonic chromosomal aberrations revealed by aCGH or NGS were analysed and stratified by maternal age and type of XCAs to assess the effect of maternal XCAs on embryo karyotypes.
The live birth rate (LBR) per embryo transfer was similar between the PGT group and IVF/ICSI group both in the first cycle of fresh or frozen embryo transfer respectively (39.13% in PGTFISH vs 42.58% in IVF/ICSI, Padj=0.558; 66.67% in PGTFISH vs 52.08% in PGTaCGH/NGS vs 53.06% in IVF/ICSI, Padj=0.756), as was the clinical pregnancy rate (60.87% in PGTFISH vs 50.97% in IVF/ICSI, Padj =0.672; 88.89% in PGTFISH vs 58.33% in PGTaCGH/NGS vs 69.39% in IVF/ICSI, Padj =0.480) and the pregnancy loss rate (35.71% in PGTFISH vs 16.46% in IVF/ICSI, Padj =0.136; 12.50% in PGTFISH vs 10.71% in PGTaCGH/NGS vs 23.53% in IVF/ICSI, Padj =0.352). The rates of maternal and neonatal complications were also comparable between the PGT and IVF/ICSI groups with fresh and frozen transfers respectively (10.00% vs 8.85%, P = 1.000; 21.74% vs 14.55%, P = 0.272). Intriguingly, the distribution of embryonic chromosome abnormalities was more frequent on autosomes 22 (20.39%), 21 (18.45%) and 16 (17.47%), compared with the X chromosome (8.73%).
Selection bias is an inherent drawback of a retrospective study. First, our participants hosted 4.84% X chromosome mosaicism with few typical somatic anomalies of TS. Second, the incidences of history of recurrent miscarriage and abnormal offspring in the PGT group were higher than in IVF/ICSI group although binary logistic regression analysis was performed to attenuate the modifying effect of confounding factors. Third, FISH performed in this study only used X/Y probes and lacked the reference of autosome, which might have resulted in misdiagnosis and bias. Finally, intrinsic disadvantages could not be totally avoided due to the retrospective nature of this study.
In the current study, comparable pregnancy outcomes were revealed among a large cohort of women with XCAs undergoing their first cycles of PGT or conventional IVF/ICSI treatment. Moreover, the X chromosome abnormality was illustrated to cause no higher frequency of aberrations in embryos. Our data provided perspectives for genetic and reproductive counselling to XCAs individuals and their families.
This work was supported by National Research and Development Plan (2016YFC1000604 and 2017YFC1001100), the National Natural Science Foundation of China (81701406), Shandong Science Fund for Distinguished Young Scholars (JQ201720), Taishan Scholars Program for Young Experts of Shandong Province (tsqn20161069) and Projects of Medical and Health Technology Development Program in Shandong Province (202005010520, 202005010523 and 2016WS0368). There is no conflict of interest to declare.
N/A.
Li C
,Dang Y
,Li J
,Li H
,Zhu Y
,Qin Y
... -
《-》
-
Genetic diagnosis, sperm phenotype and ICSI outcome in case of severe asthenozoospermia with multiple morphological abnormalities of the flagellum.
Are ICSI outcomes impaired in cases of severe asthenozoospermia with multiple morphological abnormalities of the flagellum (MMAF phenotype)?
Despite occasional technical difficulties, ICSI outcomes for couples with MMAF do not differ from those of other couples requiring ICSI, irrespective of the genetic defect.
Severe asthenozoospermia, especially when associated with the MMAF phenotype, results in male infertility. Recent findings have confirmed that a genetic aetiology is frequently responsible for this phenotype. In such situations, pregnancies can be achieved using ICSI. However, few studies to date have provided detailed analyses regarding the flagellar ultrastructural defects underlying this phenotype, its genetic aetiologies, and the results of ICSI in such cases of male infertility.
We performed a retrospective study of 25 infertile men exhibiting severe asthenozoospermia associated with the MMAF phenotype identified through standard semen analysis. They were recruited at an academic centre for assisted reproduction in Paris (France) between 2009 and 2017. Transmission electron microscopy (TEM) and whole exome sequencing (WES) were performed in order to determine the sperm ultrastructural phenotype and the causal mutations, respectively. Finally 20 couples with MMAF were treated by assisted reproductive technologies based on ICSI.
Patients with MMAF were recruited based on reduced sperm progressive motility and increased frequencies of absent, short, coiled or irregular flagella compared with those in sperm from fertile control men. A quantitative analysis of the several ultrastructural defects was performed for the MMAF patients and for fertile men. The ICSI results obtained for 20 couples with MMAF were compared to those of 378 men with oligoasthenoteratozoospermia but no MMAF as an ICSI control group.
TEM analysis and categorisation of the flagellar anomalies found in these patients provided important information regarding the structural defects underlying asthenozoospermia and sperm tail abnormalities. In particular, the absence of the central pair of axonemal microtubules was the predominant anomaly observed more frequently than in control sperm (P < 0.01). Exome sequencing, performed for 24 of the 25 patients, identified homozygous or compound heterozygous pathogenic mutations in CFAP43, CFAP44, CFAP69, DNAH1, DNAH8, AK7, TTC29 and MAATS1 in 13 patients (54.2%) (11 affecting MMAF genes and 2 affecting primary ciliary dyskinesia (PCD)-associated genes). A total of 40 ICSI cycles were undertaken for 20 MMAF couples, including 13 cycles (for 5 couples) where a hypo-osmotic swelling (HOS) test was required due to absolute asthenozoospermia. The fertilisation rate was not statistically different between the MMAF (65.7%) and the non-MMAF (66.0%) couples and it did not differ according to the genotype or the flagellar phenotype of the subjects or use of the HOS test. The clinical pregnancy rate per embryo transfer did not differ significantly between the MMAF (23.3%) and the non-MMAF (37.1%) groups. To date, 7 of the 20 MMAF couples have achieved a live birth from the ICSI attempts, with 11 babies born without any birth defects.
The ICSI procedure outcomes were assessed retrospectively on a small number of affected subjects and should be confirmed on a larger cohort. Moreover, TEM analysis could not be performed for all patients due to low sperm concentrations, and WES results are not yet available for all of the included men.
An early and extensive phenotypic and genetic investigation should be considered for all men requiring ICSI for severe asthenozoospermia. Although our study did not reveal any adverse ICSI outcomes associated with MMAF, we cannot rule out that some rare genetic causes could result in low fertilisation or pregnancy rates.
No external funding was used for this study and there are no competing interests.
N/A.
Ferreux L
,Bourdon M
,Chargui A
,Schmitt A
,Stouvenel L
,Lorès P
,Ray P
,Lousqui J
,Pocate-Cheriet K
,Santulli P
,Dulioust E
,Toure A
,Patrat C
... -
《-》
-
Total motile sperm count: a better indicator for the severity of male factor infertility than the WHO sperm classification system.
Does the prewash total motile sperm count (TMSC) have a better predictive value for spontaneous ongoing pregnancy (SOP) than the World Health Organization (WHO) classification system?
The prewash TMSC shows a better correlation with the spontaneous ongoing pregnancy rate (SOPR) than the WHO 2010 classification system.
According to the WHO classification system, an abnormal semen analysis can be diagnosed as oligozoospermia, astenozoospermia, teratozoospermia or combinations of these and azoospermia. This classification is based on the fifth percentile cut-off values of a cohort of 1953 men with proven fertility. Although this classification suggests accuracy, the relevance for the prognosis of an infertile couple and the choice of treatment is questionable. The TMSC is obtained by multiplying the sample volume by the density and the percentage of A and B motility spermatozoa.
We analyzed data from a longitudinal cohort study among unselected infertile couples who were referred to three Dutch hospitals between January 2002 and December 2006. Of the total cohort of 2476 infertile couples, only the couples with either male infertility as a single diagnosis or unexplained infertility were included (n = 1177) with a follow-up period of 3 years.
In all couples a semen analysis was performed. Based on the best semen analysis if more tests were performed, couples were grouped according to the WHO classification system and the TMSC range, as described in the Dutch national guidelines for male infertility. The primary outcome measure was the SOPR, which occurred before, during or after treatments, including expectant management, intrauterine insemination, in vitro fertilization or intracytoplasmic sperm injection. After adjustment for the confounding factors (female and male age, duration and type of infertility and result of the postcoital test) the odd ratios (ORs) for risk of SOP for each WHO and TMSC group were calculated. The couples with unexplained infertility were used as reference.
A total of 514 couples did and 663 couples did not achieve a SOP. All WHO groups have a lower SOPR compared with the unexplained group (ORs varying from 0.136 to 0.397). Comparing the couples within the abnormal WHO groups, there are no significant differences in SOPR, except when oligoasthenoteratozoospermia is compared with asthenozoospermia [OR 0.501 (95% CI 0.311-0.809)] and teratozoospermia [OR 0.499 (95% CI: 0.252-0.988)], and oligoasthenozoospermia is compared with asthenozoospermia [OR 0.572 (95% CI: 0.373-0.877)]. All TMSC groups have a significantly lower SOPR compared with the unexplained group (ORs varying from 0.171 to 0.461). Couples with a TMSC of <1 × 10(6) and 1-5 × 10(6) have significantly lower SOPR compared with couples with a TMSC of 5-10 × 10(6) [respectively, OR 0.371 (95% CI: 0.215-0.64) and OR 0.505 (95% CI: 0.307-0.832)].
To include all SOPs during the follow-up period of 3 years, couples were not censured at the start of treatment.
Roughly, three prognostic groups can be discerned: couples with a TMSC <5, couples with a TMSC between 5 and 20 and couples with a TMSC of more than 20 × 10(6) spermatozoa. We suggest using TMSC as the method of choice to express severity of male infertility.
None.
Hamilton JA
,Cissen M
,Brandes M
,Smeenk JM
,de Bruin JP
,Kremer JA
,Nelen WL
,Hamilton CJ
... -
《-》