Preimplantation genetic testing is not a preferred recommendation for patients with X chromosome abnormalities.

来自 PUBMED

作者:

Li CDang YLi JLi HZhu YQin Y

展开

摘要:

Should women with X chromosome abnormalities (XCAs) be recommended to have embryos selected by both morphological and cytogenetic assessment through preimplantation genetic testing (PGT) rather than morphological assessment only in conventional IVF/ICSI treatment? PGT is not a preferred recommendation for women with XCAs in the absence of other PGT indications. XCAs are the most frequent sort of chromosomal aberrations in infertile women. Patients with a complete or partial absence of one X chromosome, diagnosed as Turner Syndrome (TS), demonstrate low spontaneous pregnancy rates (5-7%) and high miscarriage rates (22.8-30.8%), as well as high chances of birth defects (20%). PGT is known to improve pregnancy rates and decrease the incidence of miscarriage in couples with chromosomal aberrations such as Robertsonian and reciprocal translocations and Klinefelter Syndrome. A retrospective cohort study was conducted with 394 women with XCAs and undergoing their first oocyte retrieval and first embryo transfer cycle from June 2011 to August 2019 in the Reproductive Hospital Affiliated to Shandong University. Pregnancy outcomes were compared between the conventional IVF/ICSI group (n = 284) and the PGT group (n = 110) in the first fresh or frozen embryo transfer cycle for each woman with XCAs. Three platforms were applied in PGT: fluorescence in situ hybridisation (FISH, n = 34), array comparative genomic hybridisation (aCGH, n = 24) and next-generation sequencing (NGS, n = 51). The embryo aneuploidy rate and distribution of embryonic chromosomal aberrations revealed by aCGH or NGS were analysed and stratified by maternal age and type of XCAs to assess the effect of maternal XCAs on embryo karyotypes. The live birth rate (LBR) per embryo transfer was similar between the PGT group and IVF/ICSI group both in the first cycle of fresh or frozen embryo transfer respectively (39.13% in PGTFISH vs 42.58% in IVF/ICSI, Padj=0.558; 66.67% in PGTFISH vs 52.08% in PGTaCGH/NGS vs 53.06% in IVF/ICSI, Padj=0.756), as was the clinical pregnancy rate (60.87% in PGTFISH vs 50.97% in IVF/ICSI, Padj =0.672; 88.89% in PGTFISH vs 58.33% in PGTaCGH/NGS vs 69.39% in IVF/ICSI, Padj =0.480) and the pregnancy loss rate (35.71% in PGTFISH vs 16.46% in IVF/ICSI, Padj =0.136; 12.50% in PGTFISH vs 10.71% in PGTaCGH/NGS vs 23.53% in IVF/ICSI, Padj =0.352). The rates of maternal and neonatal complications were also comparable between the PGT and IVF/ICSI groups with fresh and frozen transfers respectively (10.00% vs 8.85%, P = 1.000; 21.74% vs 14.55%, P = 0.272). Intriguingly, the distribution of embryonic chromosome abnormalities was more frequent on autosomes 22 (20.39%), 21 (18.45%) and 16 (17.47%), compared with the X chromosome (8.73%). Selection bias is an inherent drawback of a retrospective study. First, our participants hosted 4.84% X chromosome mosaicism with few typical somatic anomalies of TS. Second, the incidences of history of recurrent miscarriage and abnormal offspring in the PGT group were higher than in IVF/ICSI group although binary logistic regression analysis was performed to attenuate the modifying effect of confounding factors. Third, FISH performed in this study only used X/Y probes and lacked the reference of autosome, which might have resulted in misdiagnosis and bias. Finally, intrinsic disadvantages could not be totally avoided due to the retrospective nature of this study. In the current study, comparable pregnancy outcomes were revealed among a large cohort of women with XCAs undergoing their first cycles of PGT or conventional IVF/ICSI treatment. Moreover, the X chromosome abnormality was illustrated to cause no higher frequency of aberrations in embryos. Our data provided perspectives for genetic and reproductive counselling to XCAs individuals and their families. This work was supported by National Research and Development Plan (2016YFC1000604 and 2017YFC1001100), the National Natural Science Foundation of China (81701406), Shandong Science Fund for Distinguished Young Scholars (JQ201720), Taishan Scholars Program for Young Experts of Shandong Province (tsqn20161069) and Projects of Medical and Health Technology Development Program in Shandong Province (202005010520, 202005010523 and 2016WS0368). There is no conflict of interest to declare. N/A.

收起

展开

DOI:

10.1093/humrep/deab177

被引量:

2

年份:

2021

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1099)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读