SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.

来自 PUBMED

作者:

Li GYChen JJang SIGong KLi Q

展开

摘要:

Radiotherapy (RT) combined with cetuximab is the standard treatment for patients with inoperable head and neck cancers. Segmentation of head and neck (H&N) tumors is a prerequisite for radiotherapy planning but a time-consuming process. In recent years, deep convolutional neural networks (DCNN) have become the de facto standard for automated image segmentation. However, due to the expensive computational cost associated with enlarging the field of view in DCNNs, their ability to model long-range dependency is still limited, and this can result in sub-optimal segmentation performance for objects with background context spanning over long distances. On the other hand, Transformer models have demonstrated excellent capabilities in capturing such long-range information in several semantic segmentation tasks performed on medical images. Despite the impressive representation capacity of vision transformer models, current vision transformer-based segmentation models still suffer from inconsistent and incorrect dense predictions when fed with multi-modal input data. We suspect that the power of their self-attention mechanism may be limited in extracting the complementary information that exists in multi-modal data. To this end, we propose a novel segmentation model, debuted, Cross-modal Swin Transformer (SwinCross), with cross-modal attention (CMA) module to incorporate cross-modal feature extraction at multiple resolutions. We propose a novel architecture for cross-modal 3D semantic segmentation with two main components: (1) a cross-modal 3D Swin Transformer for integrating information from multiple modalities (PET and CT), and (2) a cross-modal shifted window attention block for learning complementary information from the modalities. To evaluate the efficacy of our approach, we conducted experiments and ablation studies on the HECKTOR 2021 challenge dataset. We compared our method against nnU-Net (the backbone of the top-5 methods in HECKTOR 2021) and other state-of-the-art transformer-based models, including UNETR and Swin UNETR. The experiments employed a five-fold cross-validation setup using PET and CT images. Empirical evidence demonstrates that our proposed method consistently outperforms the comparative techniques. This success can be attributed to the CMA module's capacity to enhance inter-modality feature representations between PET and CT during head-and-neck tumor segmentation. Notably, SwinCross consistently surpasses Swin UNETR across all five folds, showcasing its proficiency in learning multi-modal feature representations at varying resolutions through the cross-modal attention modules. We introduced a cross-modal Swin Transformer for automating the delineation of head and neck tumors in PET and CT images. Our model incorporates a cross-modality attention module, enabling the exchange of features between modalities at multiple resolutions. The experimental results establish the superiority of our method in capturing improved inter-modality correlations between PET and CT for head-and-neck tumor segmentation. Furthermore, the proposed methodology holds applicability to other semantic segmentation tasks involving different imaging modalities like SPECT/CT or PET/MRI. Code:https://github.com/yli192/SwinCross_CrossModalSwinTransformer_for_Medical_Image_Segmentation.

收起

展开

DOI:

10.1002/mp.16703

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1465)

参考文献(14)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读