A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.

来自 PUBMED

作者:

Liu HZhuang YSong EXu XMa GCetinkaya CHung CC

展开

摘要:

Multi-modal learning is widely adopted to learn the latent complementary information between different modalities in multi-modal medical image segmentation tasks. Nevertheless, the traditional multi-modal learning methods require spatially well-aligned and paired multi-modal images for supervised training, which cannot leverage unpaired multi-modal images with spatial misalignment and modality discrepancy. For training accurate multi-modal segmentation networks using easily accessible and low-cost unpaired multi-modal images in clinical practice, unpaired multi-modal learning has received comprehensive attention recently. Existing unpaired multi-modal learning methods usually focus on the intensity distribution gap but ignore the scale variation problem between different modalities. Besides, within existing methods, shared convolutional kernels are frequently employed to capture common patterns in all modalities, but they are typically inefficient at learning global contextual information. On the other hand, existing methods highly rely on a large number of labeled unpaired multi-modal scans for training, which ignores the practical scenario when labeled data is limited. To solve the above problems, we propose a modality-collaborative convolution and transformer hybrid network (MCTHNet) using semi-supervised learning for unpaired multi-modal segmentation with limited annotations, which not only collaboratively learns modality-specific and modality-invariant representations, but also could automatically leverage extensive unlabeled scans for improving performance. We make three main contributions to the proposed method. First, to alleviate the intensity distribution gap and scale variation problems across modalities, we develop a modality-specific scale-aware convolution (MSSC) module that can adaptively adjust the receptive field sizes and feature normalization parameters according to the input. Secondly, we propose a modality-invariant vision transformer (MIViT) module as the shared bottleneck layer for all modalities, which implicitly incorporates convolution-like local operations with the global processing of transformers for learning generalizable modality-invariant representations. Third, we design a multi-modal cross pseudo supervision (MCPS) method for semi-supervised learning, which enforces the consistency between the pseudo segmentation maps generated by two perturbed networks to acquire abundant annotation information from unlabeled unpaired multi-modal scans. Extensive experiments are performed on two unpaired CT and MR segmentation datasets, including a cardiac substructure dataset derived from the MMWHS-2017 dataset and an abdominal multi-organ dataset consisting of the BTCV and CHAOS datasets. Experiment results show that our proposed method significantly outperforms other existing state-of-the-art methods under various labeling ratios, and achieves a comparable segmentation performance close to single-modal methods with fully labeled data by only leveraging a small portion of labeled data. Specifically, when the labeling ratio is 25%, our proposed method achieves overall mean DSC values of 78.56% and 76.18% in cardiac and abdominal segmentation, respectively, which significantly improves the average DSC value of two tasks by 12.84% compared to single-modal U-Net models. Our proposed method is beneficial for reducing the annotation burden of unpaired multi-modal medical images in clinical applications.

收起

展开

DOI:

10.1002/mp.16338

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(3369)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读