Optimizing an efficient ensemble approach for high-quality de novo transcriptome assembly of Thymus daenensis.

来自 PUBMED

作者:

Ahmadi HSheikh-Assadi MFatahi RZamani ZShokrpour M

展开

摘要:

Non-erroneous and well-optimized transcriptome assembly is a crucial prerequisite for authentic downstream analyses. Each de novo assembler has its own algorithm-dependent pros and cons to handle the assembly issues and should be specifically tested for each dataset. Here, we examined efficiency of seven state-of-art assemblers on ~ 30 Gb data obtained from mRNA-sequencing of Thymus daenensis. In an ensemble workflow, combining the outputs of different assemblers associated with an additional redundancy-reducing step could generate an optimized outcome in terms of completeness, annotatability, and ORF richness. Based on the normalized scores of 16 benchmarking metrics, EvidentialGene, BinPacker, Trinity, rnaSPAdes, CAP3, IDBA-trans, and Velvet-Oases performed better, respectively. EvidentialGene, as the best assembler, totally produced 316,786 transcripts, of which 235,730 (74%) were predicted to have a unique protein hit (on uniref100), and also half of its transcripts contained an ORF. The total number of unique BLAST hits for EvidentialGene was approximately three times greater than that of the worst assembler (Velvet-Oases). EvidentialGene could even capture 17% and 7% more average BLAST hits than BinPacker and Trinity. Although BinPacker and CAP3 produced longer transcripts, the EvidentialGene showed a higher collinearity between transcript size and ORF length. Compared with the other programs, EvidentialGene yielded a higher number of optimal transcript sets, further full-length transcripts, and lower possible misassemblies. Our finding corroborates that in non-model species, relying on a single assembler may not give an entirely satisfactory result. Therefore, this study proposes an ensemble approach of accompanying EvidentialGene pipelines to acquire a superior assembly for T. daenensis.

收起

展开

DOI:

10.1038/s41598-023-39620-6

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(92)

参考文献(43)

引证文献(1)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读