A bioinformatics approach to identify a disulfidptosis-related gene signature for prognostic implication in colon adenocarcinoma.

来自 PUBMED

作者:

Hu GYao HWei ZLi LYu ZLi JLuo XGuo Z

展开

摘要:

Colon adenocarcinoma (COAD) is a type of cancer that arises from the glandular epithelial cells that produce mucus in the colon. COAD is influenced by various factors, including genetics, environment and lifestyle. The outcome of COAD is determined by the tumor stage, location, molecular characteristics and treatment. Disulfidptosis is a new mode of cell death that may affect cancer development. We discovered genes associated with disulfidptosis in colon adenocarcinoma and proposed them as novel biomarkers and therapeutic targets for COAD. We analyzed the mRNA expression data and clinical information of COAD patients from The Cancer Genome Atlas (TCGA) database and Xena databases, extracted disulfidptosis-related genes from the latest reports on disulfidptosis. We used machine learning to select key features and build a signature and validated the risk model using data from the Gene Expression Omnibus (GEO) database and Human Protein Atlas (HPA). We also explored the potential biological functions and therapeutic implications of the disulfidptosis-related genes using CIBERSORTx and GDSC2 databases. We identified four disulfidptosis-related genes: TRIP6, OXSM, MYH3 and MYH4. These genes predicted COAD patient survival and modulated the tumor microenvironment, drug sensitivity and immune microenvironment. Our study reveals the importance of disulfidptosis-related genes for COAD prognosis and therapy. Immune infiltration and drug susceptibility results provide important clues for finding new personalized treatment options for COAD. These findings may facilitate personalized cancer treatment.

收起

展开

DOI:

10.1038/s41598-023-39563-y

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(218)

参考文献(33)

引证文献(11)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读