BK-SWMM flood simulation framework is being proposed for urban storm flood modeling based on uncertainty parameter crowdsourcing data from a single functional region.

来自 PUBMED

作者:

Liu CLi WZhao CXie TJian SWu QXu YHu C

展开

摘要:

In recent years, urban flood disasters caused by sudden heavy rains have become increasingly severe, posing a serious threat to urban public infrastructure and the life and property safety of residents. Rapid simulation and prediction of urban rain-flood events can provide timely decision-making reference for urban flood control and disaster reduction. The complex and arduous calibration process of urban rain-flood models has been identified as a major obstacle affecting the efficiency and accuracy of simulation and prediction. This study proposes a multi-scale urban rain-flood model rapid construction method framework, BK-SWMM, focusing on urban rain-flood model parameters and based on the basic architecture of Storm Water Management Model (SWMM). The framework comprises two main components: 1) constructing a SWMM uncertainty parameter sample crowdsourcing dataset and coupling Bayesian Information Criterion (BIC) and K-means clustering machine learning algorithm to discover clustering patterns of SWMM model uncertainty parameters in urban functional areas; 2) coupling BIC and K-means with SWMM model to form BK-SWMM flood simulation framework. The applicability of the proposed framework is validated by modeling three different spatial scales in the study regions based on observed rainfall-runoff data. The research findings indicate that the distribution pattern of uncertainty parameters, such as depression storage, surface Manning coefficient, infiltration rate, and attenuation coefficient. The distribution patterns of these seven parameters in urban functional zones indicate that the values are highest in the Industrial and Commercial Areas (ICA), followed by Residential Areas (RA), and lowest in Public Areas (PA). All three spatial scales' REQ, NSEQ, and RD2 indices were superior to the SWMM and less than 10%, greater than 0.80, and greater than 0.85, respectively. However, when the study area's geographical scale expands, the simulation's accuracy will decline. Further research is required on the scale dependency of urban storm flood models.

收起

展开

DOI:

10.1016/j.jenvman.2023.118482

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(269)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读