Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.
Artificial intelligence (AI) has garnered considerable attention in the context of sepsis research, particularly in personalized diagnosis and treatment. Conducting a bibliometric analysis of existing publications can offer a broad overview of the field and identify current research trends and future research directions.
The objective of this study is to leverage bibliometric data to provide a comprehensive overview of the application of AI in sepsis.
We conducted a search in the Web of Science Core Collection database to identify relevant articles published in English until August 31, 2023. A predefined search strategy was used, evaluating titles, abstracts, and full texts as needed. We used the Bibliometrix and VOSviewer tools to visualize networks showcasing the co-occurrence of authors, research institutions, countries, citations, and keywords.
A total of 259 relevant articles published between 2014 and 2023 (until August) were identified. Over the past decade, the annual publication count has consistently risen. Leading journals in this domain include Critical Care Medicine (17/259, 6.6%), Frontiers in Medicine (17/259, 6.6%), and Scientific Reports (11/259, 4.2%). The United States (103/259, 39.8%), China (83/259, 32%), United Kingdom (14/259, 5.4%), and Taiwan (12/259, 4.6%) emerged as the most prolific countries in terms of publications. Notable institutions in this field include the University of California System, Emory University, and Harvard University. The key researchers working in this area include Ritankar Das, Chris Barton, and Rishikesan Kamaleswaran. Although the initial period witnessed a relatively low number of articles focused on AI applications for sepsis, there has been a significant surge in research within this area in recent years (2014-2023).
This comprehensive analysis provides valuable insights into AI-related research conducted in the field of sepsis, aiding health care policy makers and researchers in understanding the potential of AI and formulating effective research plans. Such analysis serves as a valuable resource for determining the advantages, sustainability, scope, and potential impact of AI models in sepsis.
Wu M
,Islam MM
,Poly TN
,Lin MC
... -
《-》
Artificial intelligence in diabetic retinopathy: Bibliometric analysis.
The use of artificial intelligence in diabetic retinopathy has become a popular research focus in the past decade. However, no scientometric report has provided a systematic overview of this scientific area.
We utilized a bibliometric approach to identify and analyse the academic literature on artificial intelligence in diabetic retinopathy and explore emerging research trends, key authors, co-authorship networks, institutions, countries, and journals. We further captured the diabetic retinopathy conditions and technology commonly used within this area.
Web of Science was used to collect relevant articles on artificial intelligence use in diabetic retinopathy published between January 1, 2012, and December 31, 2022 . All the retrieved titles were screened for eligibility, with one criterion that they must be in English. All the bibliographic information was extracted and used to perform a descriptive analysis. Bibliometrix (R tool) and VOSviewer (Leiden University) were used to construct and visualize the annual numbers of publications, journals, authors, countries, institutions, collaboration networks, keywords, and references.
In total, 931 articles that met the criteria were collected. The number of annual publications showed an increasing trend over the last ten years. Investigative Ophthalmology & Visual Science (58/931), IEEE Access (54/931), and Computers in Biology and Medicine (23/931) were the most journals with most publications. China (211/931), India (143/931, USA (133/931), and South Korea (44/931) were the most productive countries of origin. The National University of Singapore (40/931), Singapore Eye Research Institute (35/931), and Johns Hopkins University (34/931) were the most productive institutions. Ting D. (34/931), Wong T. (28/931), and Tan G. (17/931) were the most productive researchers.
This study summarizes the recent advances in artificial intelligence technology on diabetic retinopathy research and sheds light on the emerging trends, sources, leading institutions, and hot topics through bibliometric analysis and network visualization. Although this field has already shown great potential in health care, our findings will provide valuable clues relevant to future research directions and clinical practice.
Poly TN
,Islam MM
,Walther BA
,Lin MC
,Jack Li YC
... -
《-》
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.
The past decade has seen major advances in the use of artificial intelligence (AI) to solve various biomedical problems, including cancer. This has resulted in more than 6000 scientific papers focusing on AI in oncology alone. The expansiveness of this research area presents a challenge to those seeking to understand how it has developed. A scientific analysis of AI in the oncology literature is therefore crucial for understanding its overall structure and development. This may be addressed through bibliometric analysis, which employs computational and visual tools to identify research activity, relationships, and expertise within large collections of bibliographic data. There is already a large volume of research data regarding the development of AI applications in cancer research. However, there is no published bibliometric analysis of this topic that offers comprehensive insights into publication growth, co-citation networks, research collaboration, and keyword co-occurrence analysis for technological trends involving AI across the entire spectrum of oncology research. The purpose of this study is to investigate documents published during the last decade using bibliometric indicators and network visualization. This will provide a detailed assessment of global research activities, key themes, and AI trends over the entire breadth of the oncology field. It will also specifically highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions via network collaboration maps and betweenness centrality metric. This study represents the first global investigation of AI covering the entire cancer field and using several validated bibliometric techniques. It should provide valuable reference material for reorienting this field and for identifying research trajectories, topics, major publications, and influential entities including scholars, institutions, and countries. It will also identify international collaborations at three levels: micro (that of an individual researcher), meso (that of an institution), and macro (that of a country), in order to inform future lines of research.
The Science Citation Index Expanded from the Web of Science Core Collection was searched for articles and reviews pertaining exclusively to AI in cancer from 2012 through 2022. Annual publication trends were plotted using Microsoft Excel 2019. CiteSpace and VOSViewer were used to investigate the most productive countries, researchers, journals, as well as the sharing of resources, intellectual property, and knowledge base in this field, along with the co-citation analysis of references and keywords.
A total of 6757 documents were retrieved. China produced the most publications of any country (2087, 30.89%), and Sun Yat Sen University the highest number (167, 2.47%) of any institute. WEI WANG was the most prolific author (33, 0.49%). RUI ZHANG ranked first for highest betweenness centrality (0.21) and collaboration criteria. Scientific Reports was found to be the most prolific journal (208, 3.18%), while PloS one had the most co-citations (2121, 1.55%). Strong and ongoing citation bursts were found for keywords such as "tissue microarray", "tissue segmentation", and "artificial neural network".
Deep learning currently represents one of the most cutting-edge and applicable branches of AI in oncology. The literature to date has dealt extensively with radiomics, genomics, pathology, risk stratification, lesion detection, and therapy response. Current hot topics identified by our analysis highlight the potential application of AI in radiomics and precision oncology.
Wu T
,Duan Y
,Zhang T
,Tian W
,Liu H
,Deng Y
... -
《-》