-
Biallelic variants in KCTD19 associated with male factor infertility and oligoasthenoteratozoospermia.
Can whole-exome sequencing (WES) reveal new genetic factors responsible for male infertility characterized by oligozoospermia?
We identified biallelic missense variants in the Potassium Channel Tetramerization Domain Containing 19 gene (KCTD19) and confirmed it to be a novel pathogenic gene for male infertility.
KCTD19 is a key transcriptional regulator that plays an indispensable role in male fertility by regulating meiotic progression. Kctd19 gene-disrupted male mice exhibit infertility due to meiotic arrest.
We recruited a cohort of 536 individuals with idiopathic oligozoospermia from 2014 to 2022 and focused on five infertile males from three unrelated families. Semen analysis data and ICSI outcomes were collected. WES and homozygosity mapping were performed to identify potential pathogenic variants. The pathogenicity of the identified variants was investigated in silico and in vitro.
Male patients diagnosed with primary infertility were recruited from the Reproductive and Genetic Hospital of CITIC-Xiangya. Genomic DNA extracted from affected individuals was used for WES and Sanger sequencing. Sperm phenotype, sperm nuclear maturity, chromosome aneuploidy, and sperm ultrastructure were assessed using hematoxylin and eosin staining and toluidine blue staining, FISH and transmission electron microscopy. The functional effects of the identified variants in HEK293T cells were investigated via western blotting and immunofluorescence.
We identified three homozygous missense variants (NM_001100915, c.G628A:p.E210K, c.C893T:p.P298L, and c.G2309A:p.G770D) in KCTD19 in five infertile males from three unrelated families. Abnormal morphology of the sperm heads with immature nuclei and/or nuclear aneuploidy were frequently observed in individuals with biallelic KCTD19 variants, and ICSI was unable to rescue these deficiencies. These variants reduced the abundance of KCTD19 due to increased ubiquitination and impaired its nuclear colocalization with its functional partner, zinc finger protein 541 (ZFP541), in HEK293T cells.
The exact pathogenic mechanism remains unclear, and warrants further studies using knock-in mice that mimic the missense mutations found in individuals with biallelic KCTD19 variants.
Our study is the first to report a likely causal relationship between KCTD19 deficiency and male infertility, confirming the critical role of KCTD19 in human reproduction. Additionally, this study provided evidence for the poor ICSI clinical outcomes in individuals with biallelic KCTD19 variants, which may guide clinical treatment strategies.
This work was supported by the National Key Research and Developmental Program of China (2022YFC2702604 to Y.-Q.T.), the National Natural Science Foundation of China (81971447 and 82171608 to Y.-Q.T., 82101961 to C.T.), a key grant from the Prevention and Treatment of Birth Defects from Hunan Province (2019SK1012 to Y.-Q.T.), a Hunan Provincial Grant for Innovative Province Construction (2019SK4012), and the China Postdoctoral Science Foundation (2022M721124 to W.W.). The authors declare no conflicts of interest.
N/A.
Wang W
,Su L
,Meng L
,He J
,Tan C
,Yi D
,Cheng D
,Zhang H
,Lu G
,Du J
,Lin G
,Zhang Q
,Tu C
,Tan YQ
... -
《-》
-
Bi-allelic variants in KCNU1 cause impaired acrosome reactions and male infertility.
Are there new genetic factors responsible for male infertility with normal sperm quantity and morphology?
We identified the bi-allelic variants in KCNU1 and confirmed it a novel pathogenetic gene for male infertility mainly due to impaired sperm acrosome reactions (ARs).
Until now, the underlying genetic determinants for male affected individuals exhibiting normal sperm quantity and morphology have been largely unknown. Potassium/calcium-activated channel subfamily U member 1 (KCNU1) is a sperm-specific potassium channel. The Kcnu1 null mutation in male mice causes infertility due to the impaired progressive motility and AR.
We recruited a cohort of 126 male infertility individuals with typical asthenospermia or fertilization failure and focused on two infertile males from two consanguineous families from 2015 to 2020; whole-exome sequencing and homozygosity mapping were performed. We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1. Then, we generated a knock-in (KI) mouse model in September 2020 and have now carried out functional studies and possible treatment strategies.
The affected individuals with infertility were recruited from the Shanghai Ninth Hospital affiliated to Shanghai Jiao Tong University. Genomic DNA from the affected individual was extracted from peripheral blood. Whole-exome sequencing, homozygosity mapping and in silico analyses were used to screen and identify KCNU1 variants, and the variants were confirmed by Sanger sequencing. We used C57BL/6N mouse to construct KI mouse model to mimic the reproductive phenotype in vivo. We performed functional experiments by western blotting, AR assay and immunofluorescent Staining. Finally, we performed IVF and ICSI to explore the treatment strategies.
We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1 in two infertile males. We demonstrated that the splice-site variant affected normal alternative splicing of KCNU1, thus leading to the loss of function of KCNU1. Meanwhile, the missense pathogenic variant reduced the KCNU1 protein levels in sperm of both the affected individual and the KI mouse model, resulting in impaired ARs and male infertility. Intracytoplasmic sperm injection was able to rescue the deficiencies.
N/A.
The exact molecular mechanism of KCNU1 and pathways need to be further explore in the future.
This is the first report that establishes a causal relationship between KCNU1 deficiency and male infertility, confirming the critical role of KCNU1 in human reproduction. Our findings expand our knowledge of the genes that play critical roles in the human sperm AR and provide a new genetic marker for infertility.
This work was supported by the SHIPM-pi fund no. JY201801 from the Shanghai Institute of Precision Medicine, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, the National Natural Science Foundation of China (81725006, 81771649, 81822019, 81771581, 81971450, 81971382, 82001538 and 82071642). The authors declare no conflict of interest.
N/A.
Liu R
,Yan Z
,Fan Y
,Qu R
,Chen B
,Li B
,Wu L
,Wu H
,Mu J
,Zhao L
,Wang W
,Dong J
,Zeng Y
,Li Q
,Wang L
,Sang Q
,Zhang Z
,Kuang Y
... -
《-》
-
FBXO43 variants in patients with female infertility characterized by early embryonic arrest.
Can any new genetic factors responsible for early embryonic arrest in infertile patients be identified, together with the mechanism of pathogenic variants?
We identified three homozygous variants in the F-box protein 43 gene (FBXO43) in infertile patients and studies on the effects of the variants in HEK293T cells and mouse oocytes provided evidence for a causal relation between FBXO43 and female infertility.
FBXO43, an inhibitor of the anaphase-promoting complex/cyclosome, mediates Metaphase II arrest as a component of the cytostatic factor in oocytes. Both male and female Fbxo43 knockout mice are viable but sterile. FBXO43, therefore, appears to be an essential component of the mammalian cell-cycle machinery that regulates both male and female meiosis. Until now, only one article has reported a homozygous FBXO43 variant associated with teratozoospermia, but the causal relationship was not established with functional evidence.
Whole-exome sequencing (WES) and homozygosity mapping were performed in 24 probands from consanguineous families who suffered from early embryonic arrest, and two different homozygous variants in FBXO43 were identified in two independent families. WES data from a further 950 infertile women with early embryonic arrest were screened for homozygous and compound heterozygous variants in FBXO43, and a third individual with an additional homozygous variant in FBXO43 was identified. The infertile patients presenting with early embryonic arrest were recruited from August 2016 to May 2020.
The women diagnosed with primary infertility were recruited from the reproduction centers of local hospitals. Genomic DNA samples from the affected individuals, their family members, and healthy controls were extracted from peripheral blood. The FBXO43 variants were identified using WES, homozygosity mapping, in silico analysis, and variant screening. All of the variants were confirmed by Sanger sequencing, and the effects of the variants were investigated in human embryonic kidney (HEK) 293T cells by western blotting and in mouse oocytes by complementary RNA injection.
We identified three homozygous variants in FBXO43 (NM_001029860.4)-namely, c.1490_1497dup (p.(Glu500Serfs*2)), c.1747C>T (p.(Gln583*)), and c.154delG (p.(Asp52Thrfs*30))-in three independent families. All of the homozygous variants reduced the protein level of FBXO43 and reduced the level of its downstream target Cyclin B1 in HEK293T cells. In addition, the variants reduced the ability of exogenous human FBXO43 to rescue the parthenogenetic activation phenotype in Fbxo43 knockdown mouse oocytes.
Owing to the lack of in vivo data from the oocytes of patients, the exact molecular mechanism remains unknown and should be further investigated using knock out or knock in mice.
Our study has identified three pathogenic variants in FBXO43 that are involved in human early embryonic arrest. These findings contribute to our understanding of the role of FBXO43 in human early embryonic development and provide a new genetic marker for female infertility.
This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, 81971382, and 82001552), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Foundation of the Shanghai Health and Family Planning Commission (20154Y0162), the Capacity Building Planning Program for Shanghai Women and Children's Health Service, and the collaborative innovation center project construction for Shanghai Women and Children's Health. None of the authors have any competing interests.
N/A.
Wang W
,Wang W
,Xu Y
,Shi J
,Fu J
,Chen B
,Mu J
,Zhang Z
,Zhao L
,Lin J
,Du J
,Li Q
,He L
,Jin L
,Sun X
,Wang L
,Sang Q
... -
《-》
-
Biallelic variants in MOS cause large polar body in oocyte and human female infertility.
What is the genetic basis of female infertility involving abnormal oocyte morphology with the production of a large first polar body (PB1)?
The homozygous missense variant (c.791C>G) and compound missense variants (c.596A>T and c.875C>T) in MOS proto-oncogene, serine/threonine kinase (MOS) (Online Mendelian Inheritance in Man (OMIM) reference: 190060; NM_005372.1) are responsible for abnormal oocyte morphology with the production of a large PB1 to cause infertility in women.
MOS, an oocyte-specific gene, encodes a serine/threonine-protein kinase that directly phosphorylates mitogen-activated protein kinase (MAPK) kinase (MEK) to activate MAPK (also called extracellular-signal-regulated kinase (ERK)) signal cascade in the oocyte. Female mice lacking Mos remained viable, but infertile because of oocyte symmetric division, spontaneous parthenogenetic activation and early embryonic arrest. Recently, two independent studies demonstrated that female infertility with early embryonic arrest and fragmentation can be caused by biallelic mutations in MOS. However, so far, MOS variants have not been associated with the phenotype of large PB1 extrusion in human oocytes to contribute to female infertility.
Two independent infertile families characterized by the presence of large PB1 in oocytes were recruited between December 2020 and February 2022.
Genomic DNA was extracted from the peripheral blood samples of the subjects for whole-exome sequencing. Pedigree analysis was validated by Sanger sequencing. Then, the pathogenic effects of the MOS variants on MOS protein properties and ERK1/2 activation were determined in HEK293 cells and mouse oocytes.
We identified three rare missense variants in MOS, including a homozygous missense variant (c.791C>G) from Patient 1 in Family 1 and two compound missense variants (c.596A>T and c.875C>T) from twin sisters in Family 2. The MOS variants followed a recessive inheritance pattern in infertile patients. All three patients displayed a high percentage of large PB1 extrusion in the oocytes. The three MOS variants could not activate MEK1/2 and ERK1/2 in oocytes and HEK293 cells. In addition, when compared with wild-type MOS, the MOS variants decreased the MOS protein level and attenuated the binding capacity with MEK1. Microinjection of wild-type human MOS complementary RNAs (cRNAs) reversed the symmetric division of oocytes after siMos treatment. In contrast, the three MOS variants demonstrated no rescuing ability.
N/A.
Owing to the scarcity of human oocyte samples and the associated ethical restrictions, we could not perform the rescue attempt for the study patients.
Our findings expand the genetic and phenotypic spectrum of MOS variants in causing female infertility. Our study findings facilitate the early genetic diagnosis of abnormal oocyte morphology characterized as large PB1 that eventually causes infertility in women.
This study was supported by the National Natural Science Foundation of China (82071640 and 82001633), Natural Science Foundation of Zhejiang Province (LD22C060001), the Key Projects Jointly Constructed by the Ministry and the Province of Zhejiang Medical and Health Science and Technology Project (WKJ-ZJ-2005), China Postdoctoral Science Foundation (2020M682575 and 2021T140198), the Changsha Municipal Natural Science Foundation (kq2007022) and Hunan Provincial Grant for Innovative Province Construction (2019SK4012). None of the authors declare any competing interests.
N/A.
Zhang YL
,Zheng W
,Ren P
,Jin J
,Hu Z
,Liu Q
,Fan HY
,Gong F
,Lu GX
,Lin G
,Zhang S
,Tong X
... -
《-》
-
Biallelic variants in IQCN cause sperm flagellar assembly defects and male infertility.
What is the effect of defects in the manchette protein IQ motif-containing N (IQCN) on sperm flagellar assembly?
Deficiency in IQCN causes sperm flagellar assembly defects and male infertility.
The manchette is a transient structure that is involved in the shaping of the human spermatid nucleus and protein transport within flagella. Our group recently reported that the manchette protein IQCN is essential for fertilization. Variants in IQCN lead to total fertilization failure and defective acrosome structure phenotypes. However, the function of IQCN in sperm flagellar assembly is still unknown.
Fifty men with infertility were recruited from a university-affiliated center from January 2014 to October 2022.
Genomic DNA was extracted from the peripheral blood samples of all 50 individuals for whole-exome sequencing. The ultrastructure of the spermatozoa was assessed by transmission electron microscopy. Computer-assisted sperm analysis (CASA) was used to test the parameters of curvilinear velocity (VCL), straight-line velocity (VSL), and average path velocity (VAP). An Iqcn knockout (Iqcn-/-) mouse model was generated by CRISPR-Cas9 technology to evaluate sperm motility and the ultrastructure of the flagellum. Hyperactivation and sperm fertilizing ability were assessed in a mouse model. Immunoprecipitation followed by liquid chromatography-mass spectrometry was used to detect IQCN-binding proteins. Immunofluorescence was used to validate the localization of IQCN-binding proteins.
Biallelic variants in IQCN (c.3913A>T and c.3040A>G; c.2453_2454del) were identified in our cohort of infertile men. The sperm from the affected individuals showed an irregular '9 + 2' structure of the flagellum, which resulted in abnormal CASA parameters. Similar phenotypes were observed in Iqcn-/- male mice. VSL, VCL, and VAP in the sperm of Iqcn-/- male mice were significantly lower than those in Iqcn+/+ male mice. Partial peripheral doublet microtubules (DMTs) and outer dense fibers (ODFs) were absent, or a chaotic arrangement of DMTs was observed in the principal piece and end piece of the sperm flagellum. Hyperactivation and IVF ability were impaired in Iqcn-/- male mice. In addition, we investigated the causes of motility defects and identified IQCN-binding proteins including CDC42 and the intraflagellar transport protein families that regulate flagellar assembly during spermiogenesis.
More cases are needed to demonstrate the relation between IQCN variants and phenotypes.
Our findings expand the genetic and phenotypic spectrum of IQCN variants in causing male infertility, providing a genetic marker for sperm motility deficiency and male infertility.
This work was supported by the National Natural Science Foundation of China (81974230 and 82202053), the Changsha Municipal Natural Science Foundation (kq2202072), the Hunan Provincial Natural Science Foundation (2022JJ40658), and the Scientific Research Foundation of Reproductive and Genetic Hospital of CITIC-Xiangya (YNXM-202114 and YNXM-202201). No conflicts of interest were declared.
N/A.
Li Q
,Wang Y
,Zheng W
,Guo J
,Zhang S
,Gong F
,Lu GX
,Lin G
,Dai J
... -
《-》