FBXO43 variants in patients with female infertility characterized by early embryonic arrest.

来自 PUBMED

作者:

Wang WWang WXu YShi JFu JChen BMu JZhang ZZhao LLin JDu JLi QHe LJin LSun XWang LSang Q

展开

摘要:

Can any new genetic factors responsible for early embryonic arrest in infertile patients be identified, together with the mechanism of pathogenic variants? We identified three homozygous variants in the F-box protein 43 gene (FBXO43) in infertile patients and studies on the effects of the variants in HEK293T cells and mouse oocytes provided evidence for a causal relation between FBXO43 and female infertility. FBXO43, an inhibitor of the anaphase-promoting complex/cyclosome, mediates Metaphase II arrest as a component of the cytostatic factor in oocytes. Both male and female Fbxo43 knockout mice are viable but sterile. FBXO43, therefore, appears to be an essential component of the mammalian cell-cycle machinery that regulates both male and female meiosis. Until now, only one article has reported a homozygous FBXO43 variant associated with teratozoospermia, but the causal relationship was not established with functional evidence. Whole-exome sequencing (WES) and homozygosity mapping were performed in 24 probands from consanguineous families who suffered from early embryonic arrest, and two different homozygous variants in FBXO43 were identified in two independent families. WES data from a further 950 infertile women with early embryonic arrest were screened for homozygous and compound heterozygous variants in FBXO43, and a third individual with an additional homozygous variant in FBXO43 was identified. The infertile patients presenting with early embryonic arrest were recruited from August 2016 to May 2020. The women diagnosed with primary infertility were recruited from the reproduction centers of local hospitals. Genomic DNA samples from the affected individuals, their family members, and healthy controls were extracted from peripheral blood. The FBXO43 variants were identified using WES, homozygosity mapping, in silico analysis, and variant screening. All of the variants were confirmed by Sanger sequencing, and the effects of the variants were investigated in human embryonic kidney (HEK) 293T cells by western blotting and in mouse oocytes by complementary RNA injection. We identified three homozygous variants in FBXO43 (NM_001029860.4)-namely, c.1490_1497dup (p.(Glu500Serfs*2)), c.1747C>T (p.(Gln583*)), and c.154delG (p.(Asp52Thrfs*30))-in three independent families. All of the homozygous variants reduced the protein level of FBXO43 and reduced the level of its downstream target Cyclin B1 in HEK293T cells. In addition, the variants reduced the ability of exogenous human FBXO43 to rescue the parthenogenetic activation phenotype in Fbxo43 knockdown mouse oocytes. Owing to the lack of in vivo data from the oocytes of patients, the exact molecular mechanism remains unknown and should be further investigated using knock out or knock in mice. Our study has identified three pathogenic variants in FBXO43 that are involved in human early embryonic arrest. These findings contribute to our understanding of the role of FBXO43 in human early embryonic development and provide a new genetic marker for female infertility. This work was supported by the National Key Research and Development Program of China (2018YFC1003800, 2017YFC1001500, and 2016YFC1000600), the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, 81971382, and 82001552), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Foundation of the Shanghai Health and Family Planning Commission (20154Y0162), the Capacity Building Planning Program for Shanghai Women and Children's Health Service, and the collaborative innovation center project construction for Shanghai Women and Children's Health. None of the authors have any competing interests. N/A.

收起

展开

DOI:

10.1093/humrep/deab131

被引量:

17

年份:

2021

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(235)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读