-
Performance of antigen lateral flow devices in the UK during the alpha, delta, and omicron waves of the SARS-CoV-2 pandemic: a diagnostic and observational study.
Antigen lateral flow devices (LFDs) have been widely used to control SARS-CoV-2. We aimed to improve understanding of LFD performance with changes in variant infections, vaccination, viral load, and LFD use, and in the detection of infectious individuals.
In this diagnostic study, paired LFD and RT-PCR test results were prospectively collected from asymptomatic and symptomatic participants in the UK between Nov 4, 2020, and March 21, 2022, to support the National Health Service (NHS) England's Test and Trace programme. The LFDs evaluated were the Innova SARS-CoV-2 Antigen Rapid Qualitative Test, the Orient Gene Rapid Covid-19 (Antigen) Self-Test, and the Acon Flowflex SARS-CoV-2 Antigen Rapid Test (Self-Testing). Test results were collected across various community testing settings, including predeployment testing sites, routine testing centres, homes, schools, universities, workplaces, targeted community testing, and from health-care workers. We used multivariable logistic regression to analyse LFD sensitivity and specificity using RT-PCR as a reference standard, adjusting for viral load, LFD manufacturer, test setting, age, sex, test assistance, symptom status, vaccination status, and SARS-CoV-2 variant. National contact tracing data from NHS Test and Trace (Jan 1, 2021, to Jan 11, 2022) were used to estimate the proportion of transmitting index patients (with ≥1 RT-PCR-positive or LFD-positive contact) potentially detectable by LFDs (specifically Innova, as the most widely used LFD) with time, accounting for index viral load, variant, and symptom status.
We assessed 75 382 pairs of LFD and RT-PCR tests. Of these, 4131 (5·5%) were RT-PCR-positive. LFD sensitivity versus RT-PCR was 63·2% (95% CI 61·7-64·6) and specificity was 99·71% (95% CI 99·66-99·74). Increased viral load was independently associated with being LFD positive (adjusted odds ratio [aOR] 2·85 [95% CI 2·66-3·06] per 1 log10 copies per mL increase; p<0·0001). There was no evidence that LFD sensitivity differed for delta (B.1.617.2) infections versus alpha (B.1.1.7) or pre-alpha (B.1.177) infections (aOR 1·00 [0·69-1·45]; p=0·99), whereas omicron (BA.1 or BA.2) infections appeared more likely to be LFD positive (aOR 1·63 [1·02-2·59]; p=0·042). Sensitivity was higher in symptomatic participants (68·7% [95% CI 66·9-70·4]) than in asymptomatic participants (52·8% [50·1-55·4]). Among 347 374 unique index patients with probable onward transmission, 78·3% (95% CI 75·3-81·2) were estimated to have been detectable with LFDs (Innova), and this proportion was mostly stable with time and for successive variants. Overall, the estimated proportion of infectious index patients detectable by the Innova LFD was lower in asymptomatic patients (57·6% [53·6-61·9]) versus symptomatic patients (79·7% [76·7-82·5]).
LFDs remained able to detect most SARS-CoV-2 infections throughout vaccine roll-out and across different viral variants. LFDs can potentially detect most infections that transmit to others and reduce the risk of transmission. However, performance is lower in asymptomatic individuals than in symptomatic individuals.
UK Health Security Agency, the UK Government Department of Health and Social Care, National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, and the University of Oxford NIHR Biomedical Research Centre.
Eyre DW
,Futschik M
,Tunkel S
,Wei J
,Cole-Hamilton J
,Saquib R
,Germanacos N
,Dodgson AR
,Klapper PE
,Sudhanva M
,Kenny C
,Marks P
,Blandford E
,Hopkins S
,Peto TEA
,Fowler T
... -
《-》
-
Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study.
Lateral flow devices (LFDs) for rapid antigen testing are set to become a cornerstone of SARS-CoV-2 mass community testing, although their reduced sensitivity compared with PCR has raised questions of how well they identify infectious cases. Understanding their capabilities and limitations is, therefore, essential for successful implementation. We evaluated six commercial LFDs and assessed their correlation with infectious virus culture and PCR cycle threshold (Ct) values.
In a single-centre, laboratory evaluation study, we did a head-to-head comparison of six LFDs commercially available in the UK: Innova Rapid SARS-CoV-2 Antigen Test, Spring Healthcare SARS-CoV-2 Antigen Rapid Test Cassette, E25Bio Rapid Diagnostic Test, Encode SARS-CoV-2 Antigen Rapid Test Device, SureScreen COVID-19 Rapid Antigen Test Cassette, and SureScreen COVID-19 Rapid Fluorescence Antigen Test. We estimated the specificities and sensitivities of the LFDs using stored naso-oropharyngeal swabs collected at St Thomas' Hospital (London, UK) for routine diagnostic SARS-CoV-2 testing by real-time RT-PCR (RT-rtPCR). Swabs were from inpatients and outpatients from all departments of St Thomas' Hospital, and from health-care staff (all departments) and their household contacts. SARS-CoV-2-negative swabs from the same population (confirmed by RT-rtPCR) were used for comparative specificity determinations. All samples were collected between March 23 and Oct 27, 2020. We determined the limit of detection (LOD) for each test using viral plaque-forming units (PFUs) and viral RNA copy numbers of laboratory-grown SARS-CoV-2. Additionally, LFDs were selected to assess the correlation of antigen test result with RT-rtPCR Ct values and positive viral culture in Vero E6 cells. This analysis included longitudinal swabs from five infected inpatients with varying disease severities. Furthermore, the sensitivities of available LFDs were assessed in swabs (n=23; collected from Dec 4, 2020, to Jan 12, 2021) confirmed to be positive (RT-rtPCR and whole-genome sequencing) for the B.1.1.7 variant, which was the dominant genotype in the UK at the time of study completion.
All LFDs showed high specificity (≥98·0%), except for the E25Bio test (86·0% [95% CI 77·9-99·9]), and most tests reliably detected 50 PFU/test (equivalent SARS-CoV-2 N gene Ct value of 23·7, or RNA copy number of 3 × 106/mL). Sensitivities of the LFDs on clinical samples ranged from 65·0% (55·2-73·6) to 89·0% (81·4-93·8). These sensitivities increased to greater than 90% for samples with Ct values of lower than 25 for all tests except the SureScreen fluorescence (SureScreen-F) test. Positive virus culture was identified in 57 (40·4%) of 141 samples; 54 (94·7%) of the positive cultures were from swabs with Ct values lower than 25. Among the three LFDs selected for detailed comparisons (the tests with highest sensitivity [Innova], highest specificity [Encode], and alternative technology [SureScreen-F]), sensitivity of the LFDs increased to at least 94·7% when only including samples with detected viral growth. Longitudinal studies of RT-rtPCR-positive samples (tested with Innova, Encode, and both SureScreen-F and the SureScreen visual [SureScreen-V] test) showed that most of the tests identified all infectious samples as positive. Test performance (assessed for Innova and SureScreen-V) was not affected when reassessed on swabs positive for the UK variant B.1.1.7.
In this comprehensive comparison of antigen LFDs and virus infectivity, we found a clear relationship between Ct values, quantitative culture of infectious virus, and antigen LFD positivity in clinical samples. Our data support regular testing of target groups with LFDs to supplement the current PCR testing capacity, which would help to rapidly identify infected individuals in situations in which they would otherwise go undetected.
King's Together Rapid COVID-19, Medical Research Council, Wellcome Trust, Huo Family Foundation, UK Department of Health, National Institute for Health Research Comprehensive Biomedical Research Centre.
Pickering S
,Batra R
,Merrick B
,Snell LB
,Nebbia G
,Douthwaite S
,Reid F
,Patel A
,Kia Ik MT
,Patel B
,Charalampous T
,Alcolea-Medina A
,Lista MJ
,Cliff PR
,Cunningham E
,Mullen J
,Doores KJ
,Edgeworth JD
,Malim MH
,Neil SJD
,Galão RP
... -
《Lancet Microbe》
-
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020.
To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design.
We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.
We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample.
We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.
We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed.
Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.
Dinnes J
,Sharma P
,Berhane S
,van Wyk SS
,Nyaaba N
,Domen J
,Taylor M
,Cunningham J
,Davenport C
,Dittrich S
,Emperador D
,Hooft L
,Leeflang MM
,McInnes MD
,Spijker R
,Verbakel JY
,Takwoingi Y
,Taylor-Phillips S
,Van den Bruel A
,Deeks JJ
,Cochrane COVID-19 Diagnostic Test Accuracy Group
... -
《Cochrane Database of Systematic Reviews》
-
Rapid antigen testing for SARS-CoV-2 by lateral flow assay: A field evaluation of self- and professional testing at UK community testing sites.
The advent of lateral flow devices (LFDs) for SARS-CoV-2 detection enabled widespread use of rapid self-tests during the pandemic. While self-testing using LFDs is now common, whether self-testing provides comparable performance to professional testing was a key question that remained important for pandemic planning.
Three prospective multi-centre studies were conducted to compare the performance of self- and professional testing using LFDs. Participants tested themselves or were tested by trained (professional) testers at community testing sites in the UK. Corresponding qRT-PCR test results served as reference standard. The performance of Innova, Orient Gene and SureScreen LFDs by users (self) and professional testers was assessed in terms of sensitivity, specificity, and kit failure (void) rates. Impact of age, sex and symptom status was analysed using logistic regression modelling.
16,617 participants provided paired tests, of which 15,418 were included in the analysis. Self-testing with Innova, Orient Gene or SureScreen LFDs achieved sensitivities of 50 %, 53 % or 72 %, respectively, compared to qRT-PCR. Self and professional LFD testing showed no statistically different sensitivity with respect to corresponding qRT-PCR testing. Specificity was consistently equal to or higher than 99 %. Sex and age had no or only marginal impact on LFD performance while sensitivity was significantly higher for symptomatic individuals. Sensitivity of LFDs increased strongly to up to 90 % with higher levels of viral RNA measured by qRT-PCR.
Our results support SARS-CoV-2 self-testing with LFDs, especially for the detection of individuals whose qRT-PCR tests showed high viral concentrations.
Futschik ME
,Johnson S
,Turek E
,Chapman D
,Carr S
,Thorlu-Bangura Z
,Klapper PE
,Sudhanva M
,Dodgson A
,Cole-Hamilton JR
,Germanacos N
,Kulasegaran-Shylini R
,Blandford E
,Tunkel S
,Peto T
,Hopkins S
,Fowler T
... -
《-》
-
COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing.
Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour.
LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces).
4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1-6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20-0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4-84.3).
Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission.
Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research.
Peto T
,UK COVID-19 Lateral Flow Oversight Team
《-》