-
COVID-19: Rapid antigen detection for SARS-CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for mass-testing.
Lateral flow device (LFD) viral antigen immunoassays have been developed around the world as diagnostic tests for SARS-CoV-2 infection. They have been proposed to deliver an infrastructure-light, cost-economical solution giving results within half an hour.
LFDs were initially reviewed by a Department of Health and Social Care team, part of the UK government, from which 64 were selected for further evaluation from 1st August to 15th December 2020. Standardised laboratory evaluations, and for those that met the published criteria, field testing in the Falcon-C19 research study and UK pilots were performed (UK COVID-19 testing centres, hospital, schools, armed forces).
4/64 LFDs so far have desirable performance characteristics (orient Gene, Deepblue, Abbott and Innova SARS-CoV-2 Antigen Rapid Qualitative Test). All these LFDs have a viral antigen detection of >90% at 100,000 RNA copies/ml. 8951 Innova LFD tests were performed with a kit failure rate of 5.6% (502/8951, 95% CI: 5.1-6.1), false positive rate of 0.32% (22/6954, 95% CI: 0.20-0.48). Viral antigen detection/sensitivity across the sampling cohort when performed by laboratory scientists was 78.8% (156/198, 95% CI 72.4-84.3).
Our results suggest LFDs have promising performance characteristics for mass population testing and can be used to identify infectious positive individuals. The Innova LFD shows good viral antigen detection/sensitivity with excellent specificity, although kit failure rates and the impact of training are potential issues. These results support the expanded evaluation of LFDs, and assessment of greater access to testing on COVID-19 transmission.
Department of Health and Social Care. University of Oxford. Public Health England Porton Down, Manchester University NHS Foundation Trust, National Institute of Health Research.
Peto T
,UK COVID-19 Lateral Flow Oversight Team
《EClinicalMedicine》
-
Performance of antigen lateral flow devices in the UK during the alpha, delta, and omicron waves of the SARS-CoV-2 pandemic: a diagnostic and observational study.
Antigen lateral flow devices (LFDs) have been widely used to control SARS-CoV-2. We aimed to improve understanding of LFD performance with changes in variant infections, vaccination, viral load, and LFD use, and in the detection of infectious individuals.
In this diagnostic study, paired LFD and RT-PCR test results were prospectively collected from asymptomatic and symptomatic participants in the UK between Nov 4, 2020, and March 21, 2022, to support the National Health Service (NHS) England's Test and Trace programme. The LFDs evaluated were the Innova SARS-CoV-2 Antigen Rapid Qualitative Test, the Orient Gene Rapid Covid-19 (Antigen) Self-Test, and the Acon Flowflex SARS-CoV-2 Antigen Rapid Test (Self-Testing). Test results were collected across various community testing settings, including predeployment testing sites, routine testing centres, homes, schools, universities, workplaces, targeted community testing, and from health-care workers. We used multivariable logistic regression to analyse LFD sensitivity and specificity using RT-PCR as a reference standard, adjusting for viral load, LFD manufacturer, test setting, age, sex, test assistance, symptom status, vaccination status, and SARS-CoV-2 variant. National contact tracing data from NHS Test and Trace (Jan 1, 2021, to Jan 11, 2022) were used to estimate the proportion of transmitting index patients (with ≥1 RT-PCR-positive or LFD-positive contact) potentially detectable by LFDs (specifically Innova, as the most widely used LFD) with time, accounting for index viral load, variant, and symptom status.
We assessed 75 382 pairs of LFD and RT-PCR tests. Of these, 4131 (5·5%) were RT-PCR-positive. LFD sensitivity versus RT-PCR was 63·2% (95% CI 61·7-64·6) and specificity was 99·71% (95% CI 99·66-99·74). Increased viral load was independently associated with being LFD positive (adjusted odds ratio [aOR] 2·85 [95% CI 2·66-3·06] per 1 log10 copies per mL increase; p<0·0001). There was no evidence that LFD sensitivity differed for delta (B.1.617.2) infections versus alpha (B.1.1.7) or pre-alpha (B.1.177) infections (aOR 1·00 [0·69-1·45]; p=0·99), whereas omicron (BA.1 or BA.2) infections appeared more likely to be LFD positive (aOR 1·63 [1·02-2·59]; p=0·042). Sensitivity was higher in symptomatic participants (68·7% [95% CI 66·9-70·4]) than in asymptomatic participants (52·8% [50·1-55·4]). Among 347 374 unique index patients with probable onward transmission, 78·3% (95% CI 75·3-81·2) were estimated to have been detectable with LFDs (Innova), and this proportion was mostly stable with time and for successive variants. Overall, the estimated proportion of infectious index patients detectable by the Innova LFD was lower in asymptomatic patients (57·6% [53·6-61·9]) versus symptomatic patients (79·7% [76·7-82·5]).
LFDs remained able to detect most SARS-CoV-2 infections throughout vaccine roll-out and across different viral variants. LFDs can potentially detect most infections that transmit to others and reduce the risk of transmission. However, performance is lower in asymptomatic individuals than in symptomatic individuals.
UK Health Security Agency, the UK Government Department of Health and Social Care, National Institute for Health Research (NIHR) Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, and the University of Oxford NIHR Biomedical Research Centre.
Eyre DW
,Futschik M
,Tunkel S
,Wei J
,Cole-Hamilton J
,Saquib R
,Germanacos N
,Dodgson AR
,Klapper PE
,Sudhanva M
,Kenny C
,Marks P
,Blandford E
,Hopkins S
,Peto TEA
,Fowler T
... -
《-》
-
Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study.
Lateral flow devices (LFDs) for rapid antigen testing are set to become a cornerstone of SARS-CoV-2 mass community testing, although their reduced sensitivity compared with PCR has raised questions of how well they identify infectious cases. Understanding their capabilities and limitations is, therefore, essential for successful implementation. We evaluated six commercial LFDs and assessed their correlation with infectious virus culture and PCR cycle threshold (Ct) values.
In a single-centre, laboratory evaluation study, we did a head-to-head comparison of six LFDs commercially available in the UK: Innova Rapid SARS-CoV-2 Antigen Test, Spring Healthcare SARS-CoV-2 Antigen Rapid Test Cassette, E25Bio Rapid Diagnostic Test, Encode SARS-CoV-2 Antigen Rapid Test Device, SureScreen COVID-19 Rapid Antigen Test Cassette, and SureScreen COVID-19 Rapid Fluorescence Antigen Test. We estimated the specificities and sensitivities of the LFDs using stored naso-oropharyngeal swabs collected at St Thomas' Hospital (London, UK) for routine diagnostic SARS-CoV-2 testing by real-time RT-PCR (RT-rtPCR). Swabs were from inpatients and outpatients from all departments of St Thomas' Hospital, and from health-care staff (all departments) and their household contacts. SARS-CoV-2-negative swabs from the same population (confirmed by RT-rtPCR) were used for comparative specificity determinations. All samples were collected between March 23 and Oct 27, 2020. We determined the limit of detection (LOD) for each test using viral plaque-forming units (PFUs) and viral RNA copy numbers of laboratory-grown SARS-CoV-2. Additionally, LFDs were selected to assess the correlation of antigen test result with RT-rtPCR Ct values and positive viral culture in Vero E6 cells. This analysis included longitudinal swabs from five infected inpatients with varying disease severities. Furthermore, the sensitivities of available LFDs were assessed in swabs (n=23; collected from Dec 4, 2020, to Jan 12, 2021) confirmed to be positive (RT-rtPCR and whole-genome sequencing) for the B.1.1.7 variant, which was the dominant genotype in the UK at the time of study completion.
All LFDs showed high specificity (≥98·0%), except for the E25Bio test (86·0% [95% CI 77·9-99·9]), and most tests reliably detected 50 PFU/test (equivalent SARS-CoV-2 N gene Ct value of 23·7, or RNA copy number of 3 × 106/mL). Sensitivities of the LFDs on clinical samples ranged from 65·0% (55·2-73·6) to 89·0% (81·4-93·8). These sensitivities increased to greater than 90% for samples with Ct values of lower than 25 for all tests except the SureScreen fluorescence (SureScreen-F) test. Positive virus culture was identified in 57 (40·4%) of 141 samples; 54 (94·7%) of the positive cultures were from swabs with Ct values lower than 25. Among the three LFDs selected for detailed comparisons (the tests with highest sensitivity [Innova], highest specificity [Encode], and alternative technology [SureScreen-F]), sensitivity of the LFDs increased to at least 94·7% when only including samples with detected viral growth. Longitudinal studies of RT-rtPCR-positive samples (tested with Innova, Encode, and both SureScreen-F and the SureScreen visual [SureScreen-V] test) showed that most of the tests identified all infectious samples as positive. Test performance (assessed for Innova and SureScreen-V) was not affected when reassessed on swabs positive for the UK variant B.1.1.7.
In this comprehensive comparison of antigen LFDs and virus infectivity, we found a clear relationship between Ct values, quantitative culture of infectious virus, and antigen LFD positivity in clinical samples. Our data support regular testing of target groups with LFDs to supplement the current PCR testing capacity, which would help to rapidly identify infected individuals in situations in which they would otherwise go undetected.
King's Together Rapid COVID-19, Medical Research Council, Wellcome Trust, Huo Family Foundation, UK Department of Health, National Institute for Health Research Comprehensive Biomedical Research Centre.
Pickering S
,Batra R
,Merrick B
,Snell LB
,Nebbia G
,Douthwaite S
,Reid F
,Patel A
,Kia Ik MT
,Patel B
,Charalampous T
,Alcolea-Medina A
,Lista MJ
,Cliff PR
,Cunningham E
,Mullen J
,Doores KJ
,Edgeworth JD
,Malim MH
,Neil SJD
,Galão RP
... -
《Lancet Microbe》
-
Rapid antigen testing for SARS-CoV-2 by lateral flow assay: A field evaluation of self- and professional testing at UK community testing sites.
The advent of lateral flow devices (LFDs) for SARS-CoV-2 detection enabled widespread use of rapid self-tests during the pandemic. While self-testing using LFDs is now common, whether self-testing provides comparable performance to professional testing was a key question that remained important for pandemic planning.
Three prospective multi-centre studies were conducted to compare the performance of self- and professional testing using LFDs. Participants tested themselves or were tested by trained (professional) testers at community testing sites in the UK. Corresponding qRT-PCR test results served as reference standard. The performance of Innova, Orient Gene and SureScreen LFDs by users (self) and professional testers was assessed in terms of sensitivity, specificity, and kit failure (void) rates. Impact of age, sex and symptom status was analysed using logistic regression modelling.
16,617 participants provided paired tests, of which 15,418 were included in the analysis. Self-testing with Innova, Orient Gene or SureScreen LFDs achieved sensitivities of 50 %, 53 % or 72 %, respectively, compared to qRT-PCR. Self and professional LFD testing showed no statistically different sensitivity with respect to corresponding qRT-PCR testing. Specificity was consistently equal to or higher than 99 %. Sex and age had no or only marginal impact on LFD performance while sensitivity was significantly higher for symptomatic individuals. Sensitivity of LFDs increased strongly to up to 90 % with higher levels of viral RNA measured by qRT-PCR.
Our results support SARS-CoV-2 self-testing with LFDs, especially for the detection of individuals whose qRT-PCR tests showed high viral concentrations.
Futschik ME
,Johnson S
,Turek E
,Chapman D
,Carr S
,Thorlu-Bangura Z
,Klapper PE
,Sudhanva M
,Dodgson A
,Cole-Hamilton JR
,Germanacos N
,Kulasegaran-Shylini R
,Blandford E
,Tunkel S
,Peto T
,Hopkins S
,Fowler T
... -
《-》
-
A systematic review of the sensitivity and specificity of lateral flow devices in the detection of SARS-CoV-2.
Lateral flow devices (LFDs) are viral antigen tests for the detection of SARS-CoV-2 that produce a rapid result, are inexpensive and easy to operate. They have been advocated for use by the World Health Organisation to help control outbreaks and break the chain of transmission of COVID-19 infections. There are now several studies assessing their accuracy but as yet no systematic review. Our aims were to assess the sensitivity and specificity of LFDs in a systematic review and summarise the sensitivity and specificity of these tests.
A targeted search of Pubmed and Medxriv, using PRISMA principles, was conducted identifying clinical studies assessing the sensitivity and specificity of LFDs as their primary outcome compared to reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of SARS-CoV-2. Based on extracted data sensitivity and specificity was calculated for each study. Data was pooled based on manufacturer of LFD and split based on operator (self-swab or by trained professional) and sensitivity and specificity data were calculated.
Twenty-four papers were identified involving over 26,000 test results. Sensitivity from individual studies ranged from 37.7% (95% CI 30.6-45.5) to 99.2% (95% CI 95.5-99.9) and specificity from 92.4% (95% CI 87.5-95.5) to 100.0% (95% CI 99.7-100.0). Operation of the test by a trained professional or by the test subject with self-swabbing produced comparable results.
This systematic review identified that the performance of lateral flow devices is heterogeneous and dependent on the manufacturer. Some perform with high specificity but a great range of sensitivities were shown (38.32-99.19%). Test performance does not appear dependent on the operator. Potentially, LFDs could support the scaling up of mass testing to aid track and trace methodology and break the chain of transmission of COVID-19 with the additional benefit of providing individuals with the results in a much shorter time frame.
Mistry DA
,Wang JY
,Moeser ME
,Starkey T
,Lee LYW
... -
《-》