Seasonal precipitation regulates magnitude and direction of the effect of nitrogen addition on net ecosystem CO(2) exchange in saline-alkaline grassland of northern China.

来自 PUBMED

作者:

Diao HYang JHao JYan XDong KWang C

展开

摘要:

Increased nitrogen (N) deposition and altered precipitation regimes have profound effects on carbon (C) flux in semi-arid grasslands. However, the interactive effects between N enrichment and precipitation alterations (both increasing and decreasing) on ecosystem CO2 fluxes and ecosystem resource use efficiency (water use efficiency (WUE) and carbon use efficiency (CUE)) remain unclear, particularly in saline-alkaline grasslands. A four-year (2018-2021) field manipulation experiment was conducted to investigate N enrichment and precipitation alterations (decreased and increased by 50 % of ambient precipitation) and their interactions on ecosystem CO2 fluxes (gross- ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE)), as well as their underlying regulatory mechanisms under severe salinity stress in northern China. Our results showed that N addition and precipitation alteration alone did not significantly affect the GEP, ER and NEE. While the interaction of N addition and increased precipitation over the four years significantly improved the mean GEP and NEE by 24.9 % and 15.9 %, respectively. The interactive effects of N addition and increased precipitation treatment significantly stimulated the mean value of WUE by 39.1 % compared with control, but had no significant effects on CUE over the four years. Based on the four-year experiment, the magnitude and direction of the effects of N addition on the NEE were related to seasonal precipitation. Nitrogen addition increased the NEE under increased precipitation and decreased it during extreme drought. Soil salinization (pH and base cations) could directly or indirectly affect GEP and NEE via plants productivity, plant communities, as well as ecosystem resource use efficiency (WUE and CUE) based on structural equation model. Our results address lacking investigations of ecosystem C flux in saline-alkaline grasslands, and highlight that precipitation regulates the magnitude and direction of N addition on NEE in saline-alkaline grasslands.

收起

展开

DOI:

10.1016/j.scitotenv.2023.162907

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(117)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读