Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau.
摘要:
Climate warming, altered precipitation and nitrogen deposition may critically affect plant growth and ecosystem carbon fluxes. However, the underlying mechanisms are not fully understood. We conducted a 2-yr, multi-factor experiment (warming (W), altered precipitation (+30% and - 30%) and nitrogen addition (N)) in a semi-arid grassland on the Loess Plateau to study how these factors affect ecosystem carbon fluxes. Surprisingly, no interactive effects of warming, altered precipitation and nitrogen addition were detected on parameters of ecosystem carbon fluxes, including net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), gross ecosystem productivity (GEP) and soil respiration (SR). Warming marginally reduced NEE and GEP mainly due to its negative effects on them in July and August. Altered precipitation significantly affected all parameters of carbon fluxes with precipitation reduction decreasing NEE, ER and GEP, whereas precipitation addition increasing SR. In contrast, nitrogen addition had little effect on any parameters of carbon fluxes. Soil moisture was the most important driver and positively correlated with ecosystem carbon fluxes and warming impacted ecosystem carbon fluxes indirectly by decreasing soil moisture. While plant community cover did not show significant association with carbon fluxes, semi-shrubs cover was positively related to NEE, ER and GEP. Together, these results suggest that soil water availability, rather than soil temperature and nitrogen availability, may dominate the effect of the future multi-faceted global changes on semi-arid grassland carbon fluxes on the Loess Plateau.
收起
展开
DOI:
10.1016/j.scitotenv.2020.139746
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(213)
参考文献(0)
引证文献(2)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无