Performance of classification and diagnostic criteria for IgG4-related disease and comparison of patients with and without IgG4-related disease.

来自 PUBMED

作者:

Kogami MAbe YAndo TMakiyama AYamaji KTamura N

展开

摘要:

IgG4-related disease (IgG4-RD) was recently described in Japan. It is characterised by extensive organ involvement with tissue fibrosis. We assessed the performance of the 2019 American College of Rheumatology and European League Against Rheumatism (ACR/EULAR) classification criteria and the 2020 revised comprehensive diagnostic (RCD) criteria as well as differences between patients with and without IgG4-RD. In this retrospective, single-centre study of 50 patients admitted with suspected IgG4-RD, we evaluated the sensitivity and specificity of both criteria. We also compared clinical characteristics and laboratory data of patients with IgG4-RD (n = 42) and patients without IgG4-RD (n = 8). The ACR/EULAR classification criteria had 88.1% sensitivity and 87.5% specificity for IgG4-RD diagnosis. The RCD criteria had 100% sensitivity and 50% specificity. Patients with IgG4-RD had significantly more affected organs (p = 0.002). Patients with a single affected organ and IgG4-RD had significantly higher serum IgG4/IgG ratios (p = 0.027), lower serum C-reactive protein levels (p = 0.020), and lower total haemolytic complement activity (p = 0.044) than those without IgG4-RD. The ACR/EULAR classification criteria have high specificity and the RCD criteria have high sensitivity for diagnosing IgG4-RD. The number of affected organs is important for diagnosing IgG4-RD.

收起

展开

DOI:

10.1038/s41598-023-29645-2

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(137)

参考文献(23)

引证文献(0)

来源期刊

Scientific Reports

影响因子:4.991

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读