-
Immune infiltration and a necroptosis-related gene signature for predicting the prognosis of patients with cervical cancer.
Background: Cervical cancer (CC), the fourth most common cancer among women worldwide, has high morbidity and mortality. Necroptosis is a newly discovered form of cell death that plays an important role in cancer development, progression, and metastasis. However, the expression of necroptosis-related genes (NRGs) in CC and their relationship with CC prognosis remain unclear. Therefore, we screened the signature NRGs in CC and constructed a risk prognostic model. Methods: We downloaded gene data and clinical information of patients with cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) from The Cancer Genome Atlas (TCGA) database. We performed functional enrichment analysis on the differentially expressed NRGs (DENRGs). We constructed prognostic models and evaluated them by Cox and LASSO regressions for DENRGs, and validated them using the International Cancer Genome Consortium (ICGC) dataset. We used the obtained risk score to classify patients into high- and low-risk groups. We employed the ESTIMATE and single sample gene set enrichment analysis (ssGSEA) algorithms to explore the relationship between the risk score and the clinical phenotype and the tumor immune microenvironment. Results: With LASSO regression, we established a prognostic model of CC including 16 signature DENRGs (TMP3, CHMP4C, EEF1A1, FASN, TNF, S100A10, IL1A, H1.2, SLC25A5, GLTP, IFNG, H2AC13, TUBB4B, AKNA, TYK2, and H1.5). The risk score was associated with poor prognosis in CC. Survival was lower in the high-risk group than the low-risk group. The nomogram based on the risk score, T stage, and N stage showed good prognostic predictive power. We found significant differences in immune scores, immune infiltration analysis, and immune checkpoints between the high- and low-risk groups (p < 0.05). Conclusion: We screened for DENRGs based on the TCGA database by using bioinformatics methods, and constructed prognostic models based on the signature DENRGs, which we confirmed as possibly having important biological functions in CC. Our study provides a new perspective on CC prognosis and immunity, and offers a series of new targets for future treatment.
Xing X
,Tian Y
,Jin X
《Frontiers in Genetics》
-
Identification of a necroptosis-related prognostic gene signature associated with tumor immune microenvironment in cervical carcinoma and experimental verification.
Cervical carcinoma (CC) has been associated with high morbidity, poor prognosis, and high intratumor heterogeneity. Necroptosis is the significant cellular signal pathway in tumors which may overcome tumor cells' apoptosis resistance. To investigate the relationship between CC and necroptosis, we established a prognostic model based on necroptosis-related genes for predicting the overall survival (OS) of CC patients. The gene expression data and clinical information of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients were obtained from The Cancer Genome Atlas (TCGA). We identified 43 differentially expressed necroptosis-related genes (NRGs) in CESC by examining differential gene expression between CESC tumors and normal tissues, and 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Gene ontology (GO) and KEGG enrichment analysis illustrated that the genes identified were mainly related to cell necrosis, extrinsic apoptosis, Influenza A, I - kappaB kinase/NF - kappaB, NOD - like receptor, and other signaling pathways. Subsequently, least absolute shrinkage and selection operator (LASSO) regression and univariate and multivariate Cox regression analyses were used to screen for NRGs that were correlated with patient prognosis. A prognostic signature that includes CAMK2A, CYBB, IL1A, IL1B, SLC25A5, and TICAM2 was established. Based on the prognostic model, patients were stratified into either the high-risk or low-risk subgroups with distinct survival. Receiver operating characteristic (ROC) curve analysis was used to identify the predictive accuracy of the model. In relation to different clinical variables, stratification analyses were performed to demonstrate the associations between the expression levels of the six identified NRGs and the clinical variables in CESC. Immunohistochemical (IHC) validation experiments explored abnormal expressions of these six NRGs in CESC. We also explored the relationship between risk score of this necroptosis signature and expression levels of some driver genes in TCGA CESC database and Gene Expression Omnibus (GEO) datasets. Significant relationships between the six prognostic NRGs and immune-cell infiltration, chemokines, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoints in CESC were discovered. In conclusion, we successfully constructed and validated a novel NRG signature for predicting the prognosis of CC patients and might also play a crucial role in the progression and immune microenvironment in CC.
Sun K
,Huang C
,Li JZ
,Luo ZX
... -
《World Journal of Surgical Oncology》
-
Prognosis analysis of necroptosis-related genes in colorectal cancer based on bioinformatic analysis.
Background: Colorectal cancer (CRC) is one gastrointestinal malignancy, accounting for 10% of cancer diagnoses and cancer-related deaths worldwide each year. Therefore, it is urgent to identify genes involved in CRC predicting the prognosis. Methods: CRC's data were acquired from the Gene Expression Omnibus (GEO) database (GSE39582 and GSE41258 datasets) and The Cancer Genome Atlas (TCGA) database. The differentially expressed necroptosis-related genes (DENRGs) were sorted out between tumor and normal tissues. Univariate Cox regression analysis and least absolute shrinkage and selectionator operator (LASSO) analysis were applied to selected DENRGs concerning patients' overall survival and to construct a prognostic biomarker. The effectiveness of this biomarker was assessed by the Kaplan-Meier curve and the receiver operating characteristic (ROC) analysis. The GSE39582 dataset was utilized as external validation for the prognostic signature. Moreover, using univariate and multivariate Cox regression analyses, independent prognostic factors were identified to construct a prognostic nomogram. Next, signaling pathways regulated by the signature were explored through the gene set enrichment analysis (GSEA). The single sample gene set enrichment analysis (ssGSEA) algorithm and tumor immune dysfunction and exclusion (TIDE) were used to explore immune correlation in the two groups, high-risk and low-risk ones. Finally, prognostic genes' expression was examined in the GSE41258 dataset. Results: In total, 27 DENRGs were filtered, and a necroptosis-related prognostic signature based on 6 DENRGs was constructed, which may better understand the overall survival (OS) of CRC. The Kaplan-Meier curve manifested the effectiveness of the prognostic signature, and the ROC curve showed the same result. In addition, univariate and multivariate Cox regression analyses revealed that age, pathology T, and risk score were independent prognostic factors, and a nomogram was established. Furthermore, the prognostic signature was most significantly associated with the apoptosis pathway. Meanwhile, 24 immune cells represented significant differences between two groups, like the activated B cell. Furthermore, 32 immune checkpoints, TIDE scores, PD-L1 scores, and T-cell exclusion scores were significantly different between the two groups. Finally, a 6-gene prognostic signature represented different expression levels between tumor and normal samples significantly in the GSE41258 dataset. Conclusion: Our study established a signature including 6 genes and a prognostic nomogram that could significantly assess the prognosis of patients with CRC.
Liang X
,Cheng Z
,Chen X
,Li J
... -
《-》
-
Identification and validation of necroptosis-related prognostic gene signature and tumor immune microenvironment infiltration characterization in esophageal carcinoma.
Esophageal carcinoma (ESCA) is a common malignancy with a poor prognosis. Previous research has suggested that necroptosis is involved in anti-tumor immunity and promotes oncogenesis and cancer metastasis, which in turn affects tumor prognosis. However, the role of necroptosis in ESCA is unclear. This study aimed to investigate the relationships between necroptosis-related genes (NRGs) and ESCA.
The clinical data and gene expression profiles of ESCA patients were extracted from The Cancer Genome Atlas (TCGA), and 159 NRGs were screened from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We then identified 52 differentially expressed NRGs associated with ESCA and used them for further analysis. Gene ontology (GO) and KEGG functional enrichment analyses showed that these NRGs were mostly associated with the regulation of necroptosis, Influenza A, apoptosis, NOD-like receptor, and NF-Kappa B signaling pathway. Next, univariate and multivariate Cox regression and LASSO analysis were used to identify the correlation between NRGs and the prognosis of ESCA. We constructed a prognostic model to predict the prognosis of ESCA based on SLC25A5, PPIA, and TNFRSF10B; the model classified patients into high- and low-risk subgroups based on the patient's risk score. Furthermore, the receiver operating characteristic (ROC) curve was plotted, and the model was affirmed to perform moderately well for prognostic predictions. In addition, Gene Expression Omnibus (GEO) datasets were selected to validate the applicability and prognostic value of our predictive model. Based on different clinical variables, we compared the risk scores between the subgroups of different clinical features. We also analyzed the predictive value of this model for drug sensitivity. Moreover, Immunohistochemical (IHC) validation experiments explored that these three NRGs were expressed significantly higher in ESCA tissues than in adjacent non-tumor tissues. In addition, a significant correlation was observed between the three NRGs and immune-cell infiltration and immune checkpoints in ESCA.
In summary, we successfully constructed and validated a novel necroptosis-related signature containing three genes (SLC25A5, PPIA, and TNFRSF10B) for predicting prognosis in patients with ESCA; these three genes might also play a crucial role in the progression and immune microenvironment of ESCA.
Sun K
,Hong JJ
,Chen DM
,Luo ZX
,Li JZ
... -
《BMC GASTROENTEROLOGY》
-
Ferroptosis-related genes identify tumor immune microenvironment characterization for the prediction of prognosis in cervical cancer.
Cervical cancer (CC) is a disease that affects female health; therefore, timely prevention and diagnosis of CC are crucial to decrease its mortality. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is involved in tumor progression. However, the role of ferroptosis-related genes (FRGs) in the immune microenvironment of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) remains unclear.
The data sets of CESC patients, including RNA sequencing (RNA-seq) data and clinical information, were obtained from The Cancer Genome Atlas (TCGA). The ESTIMATE algorithm was used to determine the stromal score, immune score, estimate score, and tumor purity in the CESC patients' data. Additionally, FRGs were identified and used to construct a signature marker for the diagnosis and prognosis of CESC. Patients were assigned to a high- or low-risk group based on their median risk score. The tumor microenvironment (TME), immune infiltration, and functional enrichment were compared between the low- and high-risk groups. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA), were conducted to explore the underlying mechanisms in the development and prognosis of CESC.
The results showed that the estimate score was suitable for predicting the prognosis of CESC patients. Additionally, a prediction model involving four FRGs [phosphatidylethanolamine-binding protein 1 (PEBP1), dual oxidase 1 (DUOX1), iron-sulfur cluster assembly enzyme (ISCU), and cytochrome b (-245) beta subunit (CYBB)] was constructed. The performance of the prognostic model and significant clinical characteristics in predicting CESC prognosis was subsequently validated. Our results showed that the expression of CYBB affected immune cells. Gene functional enrichment analyses showed that these differentially expressed FRGs were mainly enriched in the immunity-related signaling pathways, which indicated that FRGs might affect the development and prognosis of CC by regulating the immune microenvironment.
The expression profiles of FRGs are closely related to the TME and the prognostic survival of CESC patients. The interaction between ferroptosis and immunity in the development of CC provides new insight into the molecular mechanisms of CC.
Yang X
,Yin F
,Liu Q
,Ma Y
,Zhang H
,Guo P
,Wen W
,Guo X
,Wu Y
,Yang Z
,Han Y
... -
《-》