-
Prognosis analysis of necroptosis-related genes in colorectal cancer based on bioinformatic analysis.
Background: Colorectal cancer (CRC) is one gastrointestinal malignancy, accounting for 10% of cancer diagnoses and cancer-related deaths worldwide each year. Therefore, it is urgent to identify genes involved in CRC predicting the prognosis. Methods: CRC's data were acquired from the Gene Expression Omnibus (GEO) database (GSE39582 and GSE41258 datasets) and The Cancer Genome Atlas (TCGA) database. The differentially expressed necroptosis-related genes (DENRGs) were sorted out between tumor and normal tissues. Univariate Cox regression analysis and least absolute shrinkage and selectionator operator (LASSO) analysis were applied to selected DENRGs concerning patients' overall survival and to construct a prognostic biomarker. The effectiveness of this biomarker was assessed by the Kaplan-Meier curve and the receiver operating characteristic (ROC) analysis. The GSE39582 dataset was utilized as external validation for the prognostic signature. Moreover, using univariate and multivariate Cox regression analyses, independent prognostic factors were identified to construct a prognostic nomogram. Next, signaling pathways regulated by the signature were explored through the gene set enrichment analysis (GSEA). The single sample gene set enrichment analysis (ssGSEA) algorithm and tumor immune dysfunction and exclusion (TIDE) were used to explore immune correlation in the two groups, high-risk and low-risk ones. Finally, prognostic genes' expression was examined in the GSE41258 dataset. Results: In total, 27 DENRGs were filtered, and a necroptosis-related prognostic signature based on 6 DENRGs was constructed, which may better understand the overall survival (OS) of CRC. The Kaplan-Meier curve manifested the effectiveness of the prognostic signature, and the ROC curve showed the same result. In addition, univariate and multivariate Cox regression analyses revealed that age, pathology T, and risk score were independent prognostic factors, and a nomogram was established. Furthermore, the prognostic signature was most significantly associated with the apoptosis pathway. Meanwhile, 24 immune cells represented significant differences between two groups, like the activated B cell. Furthermore, 32 immune checkpoints, TIDE scores, PD-L1 scores, and T-cell exclusion scores were significantly different between the two groups. Finally, a 6-gene prognostic signature represented different expression levels between tumor and normal samples significantly in the GSE41258 dataset. Conclusion: Our study established a signature including 6 genes and a prognostic nomogram that could significantly assess the prognosis of patients with CRC.
Liang X
,Cheng Z
,Chen X
,Li J
... -
《Frontiers in Genetics》
-
Construction of mRNA prognosis signature associated with differentially expressed genes in early stage of stomach adenocarcinomas based on TCGA and GEO datasets.
Stomach adenocarcinomas (STAD) are the most common malignancy of the human digestive system and represent the fourth leading cause of cancer-related deaths. As early-stage STAD are generally mild or asymptomatic, patients with advanced STAD have short overall survival. Early diagnosis of STAD has a considerable influence on clinical outcomes.
The mRNA expression data and clinical indicators of STAD and normal tissues were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. The gene expression differences were analyzed by R packages, and gene function enrichment analysis was performed. Kaplan-Meier method and univariate Cox proportional risk regression analysis were used to screen differential expressed genes (DEGs) related to survival of STAD patients. Multivariate Cox proportional risk regression analysis was used to further screen and determine the prognostic DEGs in STAD patients, and to construct a multigene prognostic prediction signature. The accuracy of predictive signature was tested by receiver operating characteristic (ROC) curve software package, and the nomogram of patients with STAD was drawn. Cox regression was used to investigate the correlation between multigene prognostic signature and clinical factors. The predictive performance of this model was compared with two other models proposed in previous studies using KM survival analysis, ROC curve analysis, Harrell consistency index and decision curve analysis (DCA). qRT-PCR and Western blot were used to verify the expression levels of prognostic genes. The pathways and functions of possible involvement of features were predicted using the GSEA method.
A total of 569 early-stage specific DEGs were retrieved from TCGA-STAD dataset, including 229 up-regulated genes and 340 down-regulated genes. Enrichment analysis showed that the early-stage specific DEGs were associated with cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and calcium signaling pathway. Multiple Cox regression algorithm was used to identify 10 early-stage specific DEGs associated with overall survival (P < 0.01) of STAD patients, and a multi-mRNA prognosis signature was established. The patients were divided into high-risk group and low-risk group according to the risk score. In the training set, the prognostic signature was positively correlated with tumor size and stage (P < 0.05), survival curve (P < 0.001) and time-dependent ROC (AUC = 0.625). In the training dataset and test dataset, the both signatures had good predictive efficiencies. Cox regression and DCA analysis revealed that the prognostic signature was an independent factor and had a better predict effect than the conventional TNM stage classification method and the earlier published biomarkers on the prognosis of STAD patients.
In this study, based on the early-stage specifically expressed genes, the prognostic signature constructed through TCGA and GEO datasets may become an indicator for clinical prognosis assessment of STAD and a new strategy for targeted therapy in the future.
Jiang F
,Lin H
,Yan H
,Sun X
,Yang J
,Dong M
... -
《-》
-
A mitophagy-related gene signature associated with prognosis and immune microenvironment in colorectal cancer.
Colorectal cancer (CRC) is a heterogeneous disease and one of the most prevalent malignancies worldwide. Previous research has demonstrated that mitophagy is crucial to developing colorectal cancer. This study aims to examine the association between mitophagy-related genes and the prognosis of CRC patients. Gene expression profiles and clinical information of CRC patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analysis were applied to establish a prognostic signature using mitophagy related genes. Kaplan-Meier and receiver operating characteristic (ROC) curves were used to analyze patient survival and predictive accuracy. Meanwhile, we also used the Genomics of Drug Sensitivity in Cancer (GDSC) database and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to estimate the sensitivity of chemotherapy, targeted therapy and immunotherapy. ATG14 overexpression plasmid was used to regulate the ATG14 expression level in HCT116 and SW480 cell lines, and cell counting kit-8, colony formation and transwell migration assay were performed to validate the function of ATG14 in CRC cells. A total of 22 mitophagy-driven genes connected with CRC survival were identified, and then a novel prognostic signature was established based on 10 of them (AMBRA1, ATG14, MAP1LC3A, MAP1LC3B, OPTN, VDAC1, ATG5, CSNK2A2, MFN1, TOMM22). Patients were divided into high-risk and low-risk groups based on the median risk score, and the survival of patients in the high-risk group was significantly shorter in both the training cohort and two independent cohorts. ROC curve showed that the area under the curves (AUC) of 1-, 3- and 5-year survival were 0.66, 0.66 and 0.64, respectively. Multivariate Cox regression analysis confirmed the independent prognostic value of the signature. Then we constructed a Nomogram combining the risk score, age and M stage, which had a concordance index of survival prediction of 0.77 (95% CI 0.71-0.83) and more robust predictive accuracy. Results showed that CD8+ T cells, regulatory T cells and activated NK cells were significantly more enriched in the high-risk group. Furthermore, patients in the high-risk group are more sensitive to targeted therapy or chemotherapy, including bosutinib, elesclomol, lenalidomide, midostaurin, pazopanib and sunitinib, while the low-risk group is more likely to benefit from immunotherapy. Finally, in vitro study confirmed the oncogenic significance of ATG14 in both HCT116 and SW480 cells, whose overexpression increased CRC cell proliferation, colony formation, and migration. In conclusion, we developed a novel mitophagy-related gene signature that can be utilized not only as an independent predictive biomarker but also as a tool for tailoring personalizing treatment for CRC patients, and we confirmed ATG14 as a novel oncogene in CRC.
Zhang C
,Zeng C
,Xiong S
,Zhao Z
,Wu G
... -
《Scientific Reports》
-
Identification of a Nine-Gene Signature and Establishment of a Prognostic Nomogram Predicting Overall Survival of Pancreatic Cancer.
Background: Pancreatic cancer is highly lethal and aggressive with increasing trend of mortality in both genders. An effective prediction model is needed to assess prognosis of patients for optimization of treatment. Materials and Methods: Seven datasets of mRNA expression and clinical data were obtained from gene expression omnibus (GEO) database. Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas pancreatic ductal adenocarcinoma (TCGA-PAAD) dataset. Differentially expressed genes (DEGs) between pancreatic tumor and normal tissue were identified by integrated analysis of multiple GEO datasets. Univariate and Lasso Cox regression analyses were applied to identify overall survival-related DEGs and establish a prognostic gene signature whose performance was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell's concordance index (C-index) and calibration curve. GSE62452 and GSE57495 were used for external validation. Gene set enrichment analysis (GSEA) and tumor immunity analysis were applied to elucidate the molecular mechanisms and immune relevance. Multivariate Cox regression analysis was used to identify independent prognostic factors in pancreatic cancer. Finally, a prognostic nomogram was established based on the TCGA PAAD dataset. Results: A nine-gene signature comprising MET, KLK10, COL17A1, CEP55, ANKRD22, ITGB6, ARNTL2, MCOLN3, and SLC25A45 was established to predict overall survival of pancreatic cancer. The ROC curve and C-index indicated good performance of the nine-gene signature at predicting overall survival in the TCGA dataset and external validation datasets relative to classic AJCC staging. The nine-gene signature could classify patients into high- and low-risk groups with distinct overall survival and differentiate tumor from normal tissue. Univariate Cox regression revealed that the nine-gene signature was an independent prognostic factor in pancreatic cancer. The nomogram incorporating the gene signature and clinical prognostic factors was superior to AJCC staging in predicting overall survival. The high-risk group was enriched with multiple oncological signatures and aggressiveness-related pathways and associated with significantly lower levels of CD4+ T cell infiltration. Conclusion: Our study identified a nine-gene signature and established a prognostic nomogram that reliably predict overall survival in pancreatic cancer. The findings may be beneficial to therapeutic customization and medical decision-making.
Wu M
,Li X
,Zhang T
,Liu Z
,Zhao Y
... -
《Frontiers in Oncology》
-
Identification of a necroptosis-related prognostic gene signature associated with tumor immune microenvironment in cervical carcinoma and experimental verification.
Cervical carcinoma (CC) has been associated with high morbidity, poor prognosis, and high intratumor heterogeneity. Necroptosis is the significant cellular signal pathway in tumors which may overcome tumor cells' apoptosis resistance. To investigate the relationship between CC and necroptosis, we established a prognostic model based on necroptosis-related genes for predicting the overall survival (OS) of CC patients. The gene expression data and clinical information of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) patients were obtained from The Cancer Genome Atlas (TCGA). We identified 43 differentially expressed necroptosis-related genes (NRGs) in CESC by examining differential gene expression between CESC tumors and normal tissues, and 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Gene ontology (GO) and KEGG enrichment analysis illustrated that the genes identified were mainly related to cell necrosis, extrinsic apoptosis, Influenza A, I - kappaB kinase/NF - kappaB, NOD - like receptor, and other signaling pathways. Subsequently, least absolute shrinkage and selection operator (LASSO) regression and univariate and multivariate Cox regression analyses were used to screen for NRGs that were correlated with patient prognosis. A prognostic signature that includes CAMK2A, CYBB, IL1A, IL1B, SLC25A5, and TICAM2 was established. Based on the prognostic model, patients were stratified into either the high-risk or low-risk subgroups with distinct survival. Receiver operating characteristic (ROC) curve analysis was used to identify the predictive accuracy of the model. In relation to different clinical variables, stratification analyses were performed to demonstrate the associations between the expression levels of the six identified NRGs and the clinical variables in CESC. Immunohistochemical (IHC) validation experiments explored abnormal expressions of these six NRGs in CESC. We also explored the relationship between risk score of this necroptosis signature and expression levels of some driver genes in TCGA CESC database and Gene Expression Omnibus (GEO) datasets. Significant relationships between the six prognostic NRGs and immune-cell infiltration, chemokines, tumor mutation burden (TMB), microsatellite instability (MSI), and immune checkpoints in CESC were discovered. In conclusion, we successfully constructed and validated a novel NRG signature for predicting the prognosis of CC patients and might also play a crucial role in the progression and immune microenvironment in CC.
Sun K
,Huang C
,Li JZ
,Luo ZX
... -
《World Journal of Surgical Oncology》