Protein restriction for diabetic kidney disease.

来自 PUBMED

作者:

Jiang SFang JLi W

展开

摘要:

Diabetic kidney disease (DKD) continues to be the leading cause of kidney failure across the world. For decades dietary protein restriction has been proposed for patients with DKD with the aim to retard the progression of chronic kidney disease (CKD) towards kidney failure. However, the relative benefits and harms of dietary protein restriction for slowing the progression of DKD have not been addressed. To determine the efficacy and safety of low protein diets (LPD) (0.6 to 0.8 g/kg/day) in preventing the progression of CKD towards kidney failure and in reducing the incidence of kidney failure and death (any cause) in adult patients with DKD. Moreover, the effect of LPD on adverse events (e.g. malnutrition, hyperglycaemic events, or health-related quality of life (HRQoL)) and compliance were also evaluated. We searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. We included randomised controlled trials (RCTs) or quasi-RCTs in which adults with DKD not on dialysis were randomised to receive either a LPD (0.6 to 0.8 g/kg/day) or a usual or unrestricted protein diet (UPD) (≥ 1.0 g/kg/day) for at least 12 months. Two authors independently selected studies and extracted data. Summary estimates of effect were obtained using a random-effects model. Results were summarised as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised MD (SMD) with 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. We identified eight studies involving 486 participants with DKD. The prescribed protein intake in the intervention groups ranged from 0.6 to 0.8 g/kg/day. The prescribed protein intake in the control groups was ≥ 1.0 g/kg/day, or a calculated protein intake ≥ 1.0 g/kg/day if data on prescribed protein intake were not provided. The mean duration of the interventions was two years (ranging from one to five years). Risks of bias in most of the included studies were high or unclear, most notably for allocation concealment, performance and detection bias. All studies were considered to be at high risk for performance bias due to the nature of the interventions. Most studies were not designed to examine death or kidney failure. In low certainty evidence, a LPD may have little or no effect on death (5 studies, 358 participants: RR 0.38, 95% CI 0.10 to 1.44; I² = 0%), and the number of participants who reached kidney failure (4 studies, 287 participants: RR 1.16, 95% CI 0.38 to 3.59; I² = 0%). Compared to a usual or unrestricted protein intake, it remains uncertain whether a LPD slows the decline of glomerular filtration rate over time (7 studies, 367 participants: MD -0.73 mL/min/1.73 m²/year, 95% CI -2.3 to 0.83; I² = 53%; very low certainty evidence). It is also uncertain whether the restriction of dietary protein intake impacts on the annual decline in creatinine clearance (3 studies, 203 participants: MD -2.39 mL/min/year, 95% CI -5.87 to 1.08; I² = 53%). There was only one study reporting 24-hour urinary protein excretion. In very low certainty evidence, a LPD had uncertain effects on the annual change in proteinuria (1 study, 80 participants: MD 0.90 g/24 hours, 95% CI 0.49 to 1.31). There was no evidence of malnutrition in seven studies, while one study noted this condition in the LPD group. Participant compliance with a LPD was unsatisfactory in nearly half of the studies. One study reported LPD had no effect on HRQoL. No studies reported hyperglycaemic events. Dietary protein restriction has uncertain effects on changes in kidney function over time. However, it may make little difference to the risk of death and kidney failure. Questions remain about protein intake levels and compliance with protein-restricted diets. There are limited data on HRQoL and adverse effects such as nutritional measures and hyperglycaemic events. Large-scale pragmatic RCTs with sufficient follow-up are required for different stages of CKD.

收起

展开

DOI:

10.1002/14651858.CD014906.pub2

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(244)

参考文献(78)

引证文献(13)

来源期刊

Cochrane Database of Systematic Reviews

影响因子:11.996

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读