

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(285)
参考文献(141)
引证文献(53)
-
Low protein diets for non-diabetic adults with chronic kidney disease.
Hahn D ,Hodson EM ,Fouque D 《Cochrane Database of Systematic Reviews》
被引量: 53 发表:1970年 -
Low protein diets for non-diabetic adults with chronic kidney disease.
Chronic kidney disease (CKD) is defined as reduced function of the kidneys present for 3 months or longer with adverse implications for health and survival. For several decades low protein diets have been proposed for participants with CKD with the aim of slowing the progression to end-stage kidney disease (ESKD) and delaying the onset of renal replacement therapy. However the relative benefits and harms of dietary protein restriction for preventing progression of CKD have not been resolved. This is an update of a systematic review first published in 2000 and updated in 2006, 2009 and 2018. To determine the efficacy of low protein diets in preventing the natural progression of CKD towards ESKD and in delaying the need for commencing dialysis treatment in non-diabetic adults. We searched the Cochrane Kidney and Transplant Register of Studies up to 7 September 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. We included randomised controlled trials (RCTs) or quasi RCTs in which adults with non-diabetic CKD (stages 3 to 5) not on dialysis were randomised to receive a very low protein intake (0.3 to 0.4 g/kg/day) compared with a low protein intake (0.5 to 0.6 g/kg/day) or a low protein intake compared with a normal protein intake (≥ 0.8 g/kg/day) for 12 months or more. Two authors independently selected studies and extracted data. For dichotomous outcomes (death, all causes), requirement for dialysis, adverse effects) the risk ratios (RR) with 95% confidence intervals (CI) were calculated and summary statistics estimated using the random effects model. Where continuous scales of measurement were used (glomerular filtration rate (GFR), weight), these data were analysed as the mean difference (MD) or standardised mean difference (SMD) if different scales had been used. The certainty of the evidence was assessed using GRADE. We identified 17 studies with 2996 analysed participants (range 19 to 840). Four larger multicentre studies were subdivided according to interventions so that the review included 21 separate data sets. Mean duration of participant follow-up ranged from 12 to 50 months. Random sequence generation and allocation concealment were considered at low risk of bias in eleven and nine studies respectively. All studies were considered at high risk for performance bias as they were open-label studies. We assessed detection bias for outcome assessment for GFR and ESKD separately. As GFR measurement was a laboratory outcome all studies were assessed at low risk of detection bias. For ESKD, nine studies were at low risk of detection bias as the need to commence dialysis was determined by personnel independent of the study investigators. Five studies were assessed at high risk of attrition bias with eleven studies at low risk. Ten studies were at high risk for reporting bias as they did not include data which could be included in a meta-analysis. Eight studies reported funding from government bodies while the remainder did not report on funding. Ten studies compared a low protein diet with a normal protein diet in participants with CKD categories 3a and b (9 studies) or 4 (one study). There was probably little or no difference in the numbers of participants who died (5 studies 1680 participants: RR 0.77, 95% CI 0.51 to 1.18; 13 fewer deaths per 1000; moderate certainty evidence). A low protein diet may make little or no difference in the number of participants who reached ESKD compared with a normal protein diet (6 studies, 1814 participants: RR 1.05, 95% CI 0.73 to 1.53; 7 more per 1000 reached ESKD; low certainty evidence). It remains uncertain whether a low protein diet compared with a normal protein intake impacts on the outcome of final or change in GFR (8 studies, 1680 participants: SMD -0.18, 95% CI -0.75 to 0.38; very low certainty evidence). Eight studies compared a very low protein diet with a low protein diet and two studies compared a very low protein diet with a normal protein diet. A very low protein intake compared with a low protein intake probably made little or no difference to death (6 studies, 681 participants: RR 1.26, 95% CI 0.62 to 2.54; 10 more deaths per 1000; moderate certainty evidence). However it probably reduces the number who reach ESKD (10 studies, 1010 participants: RR 0.65, 95% CI 0.49 to 0.85; 165 per 1000 fewer reached ESKD; moderate certainty evidence). It remains uncertain whether a very low protein diet compared with a low or normal protein intake influences the final or change in GFR (6 studies, 456 participants: SMD 0.12, 95% CI -0.27 to 0.52; very low certainty evidence). Final body weight was reported in only three studies. It is uncertain whether the intervention alters final body weight (3 studies, 89 participants: MD -0.40 kg, 95% CI -6.33 to 5.52; very low certainty evidence).Twelve studies reported no evidence of protein energy wasting (malnutrition) in their study participants while three studies reported small numbers of participants in each group with protein energy wasting. Most studies reported that adherence to diet was satisfactory. Quality of life was not formally assessed in any studies. This review found that very low protein diets probably reduce the number of people with CKD 4 or 5, who progress to ESKD. In contrast low protein diets may make little difference to the number of people who progress to ESKD. Low or very low protein diets probably do not influence death. However there are limited data on adverse effects such as weight differences and protein energy wasting. There are no data on whether quality of life is impacted by difficulties in adhering to protein restriction. Studies evaluating the adverse effects and the impact on quality of life of dietary protein restriction are required before these dietary approaches can be recommended for widespread use.
Hahn D ,Hodson EM ,Fouque D 《Cochrane Database of Systematic Reviews》
被引量: 35 发表:1970年 -
Protein restriction for diabetic kidney disease.
Diabetic kidney disease (DKD) continues to be the leading cause of kidney failure across the world. For decades dietary protein restriction has been proposed for patients with DKD with the aim to retard the progression of chronic kidney disease (CKD) towards kidney failure. However, the relative benefits and harms of dietary protein restriction for slowing the progression of DKD have not been addressed. To determine the efficacy and safety of low protein diets (LPD) (0.6 to 0.8 g/kg/day) in preventing the progression of CKD towards kidney failure and in reducing the incidence of kidney failure and death (any cause) in adult patients with DKD. Moreover, the effect of LPD on adverse events (e.g. malnutrition, hyperglycaemic events, or health-related quality of life (HRQoL)) and compliance were also evaluated. We searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2022 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. We included randomised controlled trials (RCTs) or quasi-RCTs in which adults with DKD not on dialysis were randomised to receive either a LPD (0.6 to 0.8 g/kg/day) or a usual or unrestricted protein diet (UPD) (≥ 1.0 g/kg/day) for at least 12 months. Two authors independently selected studies and extracted data. Summary estimates of effect were obtained using a random-effects model. Results were summarised as risk ratios (RR) with 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) or standardised MD (SMD) with 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. We identified eight studies involving 486 participants with DKD. The prescribed protein intake in the intervention groups ranged from 0.6 to 0.8 g/kg/day. The prescribed protein intake in the control groups was ≥ 1.0 g/kg/day, or a calculated protein intake ≥ 1.0 g/kg/day if data on prescribed protein intake were not provided. The mean duration of the interventions was two years (ranging from one to five years). Risks of bias in most of the included studies were high or unclear, most notably for allocation concealment, performance and detection bias. All studies were considered to be at high risk for performance bias due to the nature of the interventions. Most studies were not designed to examine death or kidney failure. In low certainty evidence, a LPD may have little or no effect on death (5 studies, 358 participants: RR 0.38, 95% CI 0.10 to 1.44; I² = 0%), and the number of participants who reached kidney failure (4 studies, 287 participants: RR 1.16, 95% CI 0.38 to 3.59; I² = 0%). Compared to a usual or unrestricted protein intake, it remains uncertain whether a LPD slows the decline of glomerular filtration rate over time (7 studies, 367 participants: MD -0.73 mL/min/1.73 m²/year, 95% CI -2.3 to 0.83; I² = 53%; very low certainty evidence). It is also uncertain whether the restriction of dietary protein intake impacts on the annual decline in creatinine clearance (3 studies, 203 participants: MD -2.39 mL/min/year, 95% CI -5.87 to 1.08; I² = 53%). There was only one study reporting 24-hour urinary protein excretion. In very low certainty evidence, a LPD had uncertain effects on the annual change in proteinuria (1 study, 80 participants: MD 0.90 g/24 hours, 95% CI 0.49 to 1.31). There was no evidence of malnutrition in seven studies, while one study noted this condition in the LPD group. Participant compliance with a LPD was unsatisfactory in nearly half of the studies. One study reported LPD had no effect on HRQoL. No studies reported hyperglycaemic events. Dietary protein restriction has uncertain effects on changes in kidney function over time. However, it may make little difference to the risk of death and kidney failure. Questions remain about protein intake levels and compliance with protein-restricted diets. There are limited data on HRQoL and adverse effects such as nutritional measures and hyperglycaemic events. Large-scale pragmatic RCTs with sufficient follow-up are required for different stages of CKD.
Jiang S ,Fang J ,Li W 《Cochrane Database of Systematic Reviews》
被引量: 13 发表:1970年 -
Description of the condition Malaria, an infectious disease transmitted by the bite of female mosquitoes from several Anopheles species, occurs in 87 countries with ongoing transmission (WHO 2020). The World Health Organization (WHO) estimated that, in 2019, approximately 229 million cases of malaria occurred worldwide, with 94% occurring in the WHO's African region (WHO 2020). Of these malaria cases, an estimated 409,000 deaths occurred globally, with 67% occurring in children under five years of age (WHO 2020). Malaria also negatively impacts the health of women during pregnancy, childbirth, and the postnatal period (WHO 2020). Sulfadoxine/pyrimethamine (SP), an antifolate antimalarial, has been widely used across sub-Saharan Africa as the first-line treatment for uncomplicated malaria since it was first introduced in Malawi in 1993 (Filler 2006). Due to increasing resistance to SP, in 2000 the WHO recommended that one of several artemisinin-based combination therapies (ACTs) be used instead of SP for the treatment of uncomplicated malaria caused by Plasmodium falciparum (Global Partnership to Roll Back Malaria 2001). However, despite these recommendations, SP continues to be advised for intermittent preventive treatment in pregnancy (IPTp) and intermittent preventive treatment in infants (IPTi), whether the person has malaria or not (WHO 2013). Description of the intervention Folate (vitamin B9) includes both naturally occurring folates and folic acid, the fully oxidized monoglutamic form of the vitamin, used in dietary supplements and fortified food. Folate deficiency (e.g. red blood cell (RBC) folate concentrations of less than 305 nanomoles per litre (nmol/L); serum or plasma concentrations of less than 7 nmol/L) is common in many parts of the world and often presents as megaloblastic anaemia, resulting from inadequate intake, increased requirements, reduced absorption, or abnormal metabolism of folate (Bailey 2015; WHO 2015a). Pregnant women have greater folate requirements; inadequate folate intake (evidenced by RBC folate concentrations of less than 400 nanograms per millilitre (ng/mL), or 906 nmol/L) prior to and during the first month of pregnancy increases the risk of neural tube defects, preterm delivery, low birthweight, and fetal growth restriction (Bourassa 2019). The WHO recommends that all women who are trying to conceive consume 400 micrograms (µg) of folic acid daily from the time they begin trying to conceive through to 12 weeks of gestation (WHO 2017). In 2015, the WHO added the dosage of 0.4 mg of folic acid to the essential drug list (WHO 2015c). Alongside daily oral iron (30 mg to 60 mg elemental iron), folic acid supplementation is recommended for pregnant women to prevent neural tube defects, maternal anaemia, puerperal sepsis, low birthweight, and preterm birth in settings where anaemia in pregnant women is a severe public health problem (i.e. where at least 40% of pregnant women have a blood haemoglobin (Hb) concentration of less than 110 g/L). How the intervention might work Potential interactions between folate status and malaria infection The malaria parasite requires folate for survival and growth; this has led to the hypothesis that folate status may influence malaria risk and severity. In rhesus monkeys, folate deficiency has been found to be protective against Plasmodium cynomolgi malaria infection, compared to folate-replete animals (Metz 2007). Alternatively, malaria may induce or exacerbate folate deficiency due to increased folate utilization from haemolysis and fever. Further, folate status measured via RBC folate is not an appropriate biomarker of folate status in malaria-infected individuals since RBC folate values in these individuals are indicative of both the person's stores and the parasite's folate synthesis. A study in Nigeria found that children with malaria infection had significantly higher RBC folate concentrations compared to children without malaria infection, but plasma folate levels were similar (Bradley-Moore 1985). Why it is important to do this review The malaria parasite needs folate for survival and growth in humans. For individuals, adequate folate levels are critical for health and well-being, and for the prevention of anaemia and neural tube defects. Many countries rely on folic acid supplementation to ensure adequate folate status in at-risk populations. Different formulations for folic acid supplements are available in many international settings, with dosages ranging from 400 µg to 5 mg. Evaluating folic acid dosage levels used in supplementation efforts may increase public health understanding of its potential impacts on malaria risk and severity and on treatment failures. Examining folic acid interactions with antifolate antimalarial medications and with malaria disease progression may help countries in malaria-endemic areas determine what are the most appropriate lower dose folic acid formulations for at-risk populations. The WHO has highlighted the limited evidence available and has indicated the need for further research on biomarkers of folate status, particularly interactions between RBC folate concentrations and tuberculosis, human immunodeficiency virus (HIV), and antifolate antimalarial drugs (WHO 2015b). An earlier Cochrane Review assessed the effects and safety of iron supplementation, with or without folic acid, in children living in hyperendemic or holoendemic malaria areas; it demonstrated that iron supplementation did not increase the risk of malaria, as indicated by fever and the presence of parasites in the blood (Neuberger 2016). Further, this review stated that folic acid may interfere with the efficacy of SP; however, the efficacy and safety of folic acid supplementation on these outcomes has not been established. This review will provide evidence on the effectiveness of daily folic acid supplementation in healthy and malaria-infected individuals living in malaria-endemic areas. Additionally, it will contribute to achieving both the WHO Global Technical Strategy for Malaria 2016-2030 (WHO 2015d), and United Nations Sustainable Development Goal 3 (to ensure healthy lives and to promote well-being for all of all ages) (United Nations 2021), and evaluating whether the potential effects of folic acid supplementation, at different doses (e.g. 0.4 mg, 1 mg, 5 mg daily), interferes with the effect of drugs used for prevention or treatment of malaria. To examine the effects of folic acid supplementation, at various doses, on malaria susceptibility (risk of infection) and severity among people living in areas with various degrees of malaria endemicity. We will examine the interaction between folic acid supplements and antifolate antimalarial drugs. Specifically, we will aim to answer the following. Among uninfected people living in malaria endemic areas, who are taking or not taking antifolate antimalarials for malaria prophylaxis, does taking a folic acid-containing supplement increase susceptibility to or severity of malaria infection? Among people with malaria infection who are being treated with antifolate antimalarials, does folic acid supplementation increase the risk of treatment failure? Criteria for considering studies for this review Types of studies Inclusion criteria Randomized controlled trials (RCTs) Quasi-RCTs with randomization at the individual or cluster level conducted in malaria-endemic areas (areas with ongoing, local malaria transmission, including areas approaching elimination, as listed in the World Malaria Report 2020) (WHO 2020) Exclusion criteria Ecological studies Observational studies In vivo/in vitro studies Economic studies Systematic literature reviews and meta-analyses (relevant systematic literature reviews and meta-analyses will be excluded but flagged for grey literature screening) Types of participants Inclusion criteria Individuals of any age or gender, living in a malaria endemic area, who are taking antifolate antimalarial medications (including but not limited to sulfadoxine/pyrimethamine (SP), pyrimethamine-dapsone, pyrimethamine, chloroquine and proguanil, cotrimoxazole) for the prevention or treatment of malaria (studies will be included if more than 70% of the participants live in malaria-endemic regions) Studies assessing participants with or without anaemia and with or without malaria parasitaemia at baseline will be included Exclusion criteria Individuals not taking antifolate antimalarial medications for prevention or treatment of malaria Individuals living in non-malaria endemic areas Types of interventions Inclusion criteria Folic acid supplementation Form: in tablet, capsule, dispersible tablet at any dose, during administration, or periodically Timing: during, before, or after (within a period of four to six weeks) administration of antifolate antimalarials Iron-folic acid supplementation Folic acid supplementation in combination with co-interventions that are identical between the intervention and control groups. Co-interventions include: anthelminthic treatment; multivitamin or multiple micronutrient supplementation; 5-methyltetrahydrofolate supplementation. Exclusion criteria Folate through folate-fortified water Folic acid administered through large-scale fortification of rice, wheat, or maize Comparators Placebo No treatment No folic acid/different doses of folic acid Iron Types of outcome measures Primary outcomes Uncomplicated malaria (defined as a history of fever with parasitological confirmation; acceptable parasitological confirmation will include rapid diagnostic tests (RDTs), malaria smears, or nucleic acid detection (i.e. polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), etc.)) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Severe malaria (defined as any case with cerebral malaria or acute P. falciparum malaria, with signs of severity or evidence of vital organ dysfunction, or both) (WHO 2010). This outcome is relevant for patients without malaria, given antifolate antimalarials for malaria prophylaxis. Parasite clearance (any Plasmodium species), defined as the time it takes for a patient who tests positive at enrolment and is treated to become smear-negative or PCR negative. This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Treatment failure (defined as the inability to clear malaria parasitaemia or prevent recrudescence after administration of antimalarial medicine, regardless of whether clinical symptoms are resolved) (WHO 2019). This outcome is relevant for patients with malaria, treated with antifolate antimalarials. Secondary outcomes Duration of parasitaemia Parasite density Haemoglobin (Hb) concentrations (g/L) Anaemia: severe anaemia (defined as Hb less than 70 g/L in pregnant women and children aged six to 59 months; and Hb less than 80 g/L in other populations); moderate anaemia (defined as Hb less than 100 g/L in pregnant women and children aged six to 59 months; and less than 110 g/L in others) Death from any cause Among pregnant women: stillbirth (at less than 28 weeks gestation); low birthweight (less than 2500 g); active placental malaria (defined as Plasmodium detected in placental blood by smear or PCR, or by Plasmodium detected on impression smear or placental histology). Search methods for identification of studies A search will be conducted to identify completed and ongoing studies, without date or language restrictions. Electronic searches A search strategy will be designed to include the appropriate subject headings and text word terms related to each intervention of interest and study design of interest (see Appendix 1). Searches will be broken down by these two criteria (intervention of interest and study design of interest) to allow for ease of prioritization, if necessary. The study design filters recommended by the Scottish Intercollegiate Guidelines Network (SIGN), and those designed by Cochrane for identifying clinical trials for MEDLINE and Embase, will be used (SIGN 2020). There will be no date or language restrictions. Non-English articles identified for inclusion will be translated into English. If translations are not possible, advice will be requested from the Cochrane Infectious Diseases Group and the record will be stored in the "Awaiting assessment" section of the review until a translation is available. The following electronic databases will be searched for primary studies. Cochrane Central Register of Controlled Trials. Cumulative Index to Nursing and Allied Health Literature (CINAHL). Embase. MEDLINE. Scopus. Web of Science (both the Social Science Citation Index and the Science Citation Index). We will conduct manual searches of ClinicalTrials.gov, the International Clinical Trials Registry Platform (ICTRP), and the United Nations Children's Fund (UNICEF) Evaluation and Research Database (ERD), in order to identify relevant ongoing or planned trials, abstracts, and full-text reports of evaluations, studies, and surveys related to programmes on folic acid supplementation in malaria-endemic areas. Additionally, manual searches of grey literature to identify RCTs that have not yet been published but are potentially eligible for inclusion will be conducted in the following sources. Global Index Medicus (GIM). African Index Medicus (AIM). Index Medicus for the Eastern Mediterranean Region (IMEMR). Latin American & Caribbean Health Sciences Literature (LILACS). Pan American Health Organization (PAHO). Western Pacific Region Index Medicus (WPRO). Index Medicus for the South-East Asian Region (IMSEAR). The Spanish Bibliographic Index in Health Sciences (IBECS) (ibecs.isciii.es/). Indian Journal of Medical Research (IJMR) (journals.lww.com/ijmr/pages/default.aspx). Native Health Database (nativehealthdatabase.net/). Scielo (www.scielo.br/). Searching other resources Handsearches of the five journals with the highest number of included studies in the last 12 months will be conducted to capture any relevant articles that may not have been indexed in the databases at the time of the search. We will contact the authors of included studies and will check reference lists of included papers for the identification of additional records. For assistance in identifying ongoing or unpublished studies, we will contact the Division of Nutrition, Physical Activity, and Obesity (DNPAO) and the Division of Parasitic Diseases and Malaria (DPDM) of the CDC, the United Nations World Food Programme (WFP), Nutrition International (NI), Global Alliance for Improved Nutrition (GAIN), and Hellen Keller International (HKI). Data collection and analysis Selection of studies Two review authors will independently screen the titles and abstracts of articles retrieved by each search to assess eligibility, as determined by the inclusion and exclusion criteria. Studies deemed eligible for inclusion by both review authors in the abstract screening phase will advance to the full-text screening phase, and full-text copies of all eligible papers will be retrieved. If full articles cannot be obtained, we will attempt to contact the authors to obtain further details of the studies. If such information is not obtained, we will classify the study as "awaiting assessment" until further information is published or made available to us. The same two review authors will independently assess the eligibility of full-text articles for inclusion in the systematic review. If any discrepancies occur between the studies selected by the two review authors, a third review author will provide arbitration. Each trial will be scrutinized to identify multiple publications from the same data set, and the justification for excluded trials will be documented. A PRISMA flow diagram of the study selection process will be presented to provide information on the number of records identified in the literature searches, the number of studies included and excluded, and the reasons for exclusion (Moher 2009). The list of excluded studies, along with their reasons for exclusion at the full-text screening phase, will also be created. Data extraction and management Two review authors will independently extract data for the final list of included studies using a standardized data specification form. Discrepancies observed between the data extracted by the two authors will be resolved by involving a third review author and reaching a consensus. Information will be extracted on study design components, baseline participant characteristics, intervention characteristics, and outcomes. For individually randomized trials, we will record the number of participants experiencing the event and the number analyzed in each treatment group or the effect estimate reported (e.g. risk ratio (RR)) for dichotomous outcome measures. For count data, we will record the number of events and the number of person-months of follow-up in each group. If the number of person-months is not reported, the product of the duration of follow-up and the number of children evaluated will be used to estimate this figure. We will calculate the rate ratio and standard error (SE) for each study. Zero events will be replaced by 0.5. We will extract both adjusted and unadjusted covariate incidence rate ratios if they are reported in the original studies. For continuous data, we will extract means (arithmetic or geometric) and a measure of variance (standard deviation (SD), SE, or confidence interval (CI)), percentage or mean change from baseline, and the numbers analyzed in each group. SDs will be computed from SEs or 95% CIs, assuming a normal distribution of the values. Haemoglobin values in g/dL will be calculated by multiplying haematocrit or packed cell volume values by 0.34, and studies reporting haemoglobin values in g/dL will be converted to g/L. In cluster-randomized trials, we will record the unit of randomization (e.g. household, compound, sector, or village), the number of clusters in the trial, and the average cluster size. The statistical methods used to analyze the trials will be documented, along with details describing whether these methods adjusted for clustering or other covariates. We plan to extract estimates of the intra-cluster correlation coefficient (ICC) for each outcome. Where results are adjusted for clustering, we will extract the treatment effect estimate and the SD or CI. If the results are not adjusted for clustering, we will extract the data reported. Assessment of risk of bias in included studies Two review authors (KSC, LFY) will independently assess the risk of bias for each included trial using the Cochrane 'Risk of bias 2' tool (RoB 2) for randomized studies (Sterne 2019). Judgements about the risk of bias of included studies will be made according to the recommendations outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). Disagreements will be resolved by discussion, or by involving a third review author. The interest of our review will be to assess the effect of assignment to the interventions at baseline. We will evaluate each primary outcome using the RoB2 tool. The five domains of the Cochrane RoB2 tool include the following. Bias arising from the randomization process. Bias due to deviations from intended interventions. Bias due to missing outcome data. Bias in measurement of the outcome. Bias in selection of the reported result. Each domain of the RoB2 tool comprises the following. A series of 'signalling' questions. A judgement about the risk of bias for the domain, facilitated by an algorithm that maps responses to the signalling questions to a proposed judgement. Free-text boxes to justify responses to the signalling questions and 'Risk of bias' judgements. An option to predict (and explain) the likely direction of bias. Responses to signalling questions elicit information relevant to an assessment of the risk of bias. These response options are as follows. Yes (may indicate either low or high risk of bias, depending on the most natural way to ask the question). Probably yes. Probably no. No. No information (may indicate no evidence of that problem or an absence of information leading to concerns about there being a problem). Based on the answer to the signalling question, a 'Risk of bias' judgement is assigned to each domain. These judgements include one of the following. High risk of bias Low risk of bias Some concerns To generate the risk of bias judgement for each domain in the randomized studies, we will use the Excel template, available at www.riskofbias.info/welcome/rob-2-0-tool/current-version-of-rob-2. This file will be stored on a scientific data website, available to readers. Risk of bias in cluster randomized controlled trials For the cluster randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 1b (bias arising from the timing of identification or recruitment of participants) and its related signalling questions. To generate the risk of bias judgement for each domain in the cluster RCTs, we will use the Excel template available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-cluster-randomized-trials. This file will be stored on a scientific data website, available to readers. Risk of bias in cross-over randomized controlled trials For cross-over randomized trials, we will be using the RoB2 tool to analyze the five standard domains listed above along with Domain 2 (bias due to deviations from intended interventions), and Domain 3 (bias due to missing outcome data), and their respective signalling questions. To generate the risk of bias judgement for each domain in the cross-over RCTs, we will use the Excel template, available at https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool/rob-2-for-crossover-trials, for each risk of bias judgement of cross-over randomized studies. This file will be stored on a scientific data website, available to readers. Overall risk of bias The overall 'Risk of bias' judgement for each specific trial being assessed will be based on each domain-level judgement. The overall judgements include the following. Low risk of bias (the trial is judged to be at low risk of bias for all domains). Some concerns (the trial is judged to raise some concerns in at least one domain but is not judged to be at high risk of bias for any domain). High risk of bias (the trial is judged to be at high risk of bias in at least one domain, or is judged to have some concerns for multiple domains in a way that substantially lowers confidence in the result). The 'risk of bias' assessments will inform our GRADE evaluations of the certainty of evidence for our primary outcomes presented in the 'Summary of findings' tables and will also be used to inform the sensitivity analyses; (see Sensitivity analysis). If there is insufficient information in study reports to enable an assessment of the risk of bias, studies will be classified as "awaiting assessment" until further information is published or made available to us. Measures of treatment effect Dichotomous data For dichotomous data, we will present proportions and, for two-group comparisons, results as average RR or odds ratio (OR) with 95% CIs. Ordered categorical data Continuous data We will report results for continuous outcomes as the mean difference (MD) with 95% CIs, if outcomes are measured in the same way between trials. Where some studies have reported endpoint data and others have reported change-from-baseline data (with errors), we will combine these in the meta-analysis, if the outcomes were reported using the same scale. We will use the standardized mean difference (SMD), with 95% CIs, to combine trials that measured the same outcome but used different methods. If we do not find three or more studies for a pooled analysis, we will summarize the results in a narrative form. Unit of analysis issues Cluster-randomized trials We plan to combine results from both cluster-randomized and individually randomized studies, providing there is little heterogeneity between the studies. If the authors of cluster-randomized trials conducted their analyses at a different level from that of allocation, and they have not appropriately accounted for the cluster design in their analyses, we will calculate the trials' effective sample sizes to account for the effect of clustering in data. When one or more cluster-RCT reports RRs adjusted for clustering, we will compute cluster-adjusted SEs for the other trials. When none of the cluster-RCTs provide cluster-adjusted RRs, we will adjust the sample size for clustering. We will divide, by the estimated design effects (DE), the number of events and number evaluated for dichotomous outcomes and the number evaluated for continuous outcomes, where DE = 1 + ((average cluster size 1) * ICC). The derivation of the estimated ICCs and DEs will be reported. We will utilize the intra-cluster correlation coefficient (ICC), derived from the trial (if available), or from another source (e.g., using the ICCs derived from other, similar trials) and then calculate the design effect with the formula provided in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2021). If this approach is used, we will report it and undertake sensitivity analysis to investigate the effect of variations in ICC. Studies with more than two treatment groups If we identify studies with more than two intervention groups (multi-arm studies), where possible we will combine groups to create a single pair-wise comparison or use the methods set out in the Cochrane Handbook to avoid double counting study participants (Higgins 2021). For the subgroup analyses, when the control group was shared by two or more study arms, we will divide the control group (events and total population) over the number of relevant subgroups to avoid double counting the participants. Trials with several study arms can be included more than once for different comparisons. Cross-over trials From cross-over trials, we will consider the first period of measurement only and will analyze the results together with parallel-group studies. Multiple outcome events In several outcomes, a participant might experience more than one outcome event during the trial period. For all outcomes, we will extract the number of participants with at least one event. Dealing with missing data We will contact the trial authors if the available data are unclear, missing, or reported in a format that is different from the format needed. We aim to perform a 'per protocol' or 'as observed' analysis; otherwise, we will perform a complete case analysis. This means that for treatment failure, we will base the analyses on the participants who received treatment and the number of participants for which there was an inability to clear malarial parasitaemia or prevent recrudescence after administration of an antimalarial medicine reported in the studies. Assessment of heterogeneity Heterogeneity in the results of the trials will be assessed by visually examining the forest plot to detect non-overlapping CIs, using the Chi2 test of heterogeneity (where a P value of less than 0.1 indicates statistical significance) and the I2 statistic of inconsistency (with a value of greater than 50% denoting moderate levels of heterogeneity). When statistical heterogeneity is present, we will investigate the reasons for it, using subgroup analysis. Assessment of reporting biases We will construct a funnel plot to assess the effect of small studies for the main outcome (when including more than 10 trials). Data synthesis The primary analysis will include all eligible studies that provide data regardless of the overall risk of bias as assessed by the RoB2 tool. Analyses will be conducted using Review Manager 5.4 (Review Manager 2020). Cluster-RCTs will be included in the main analysis after adjustment for clustering (see the previous section on cluster-RCTs). The meta-analysis will be performed using the Mantel-Haenszel random-effects model or the generic inverse variance method (when adjustment for clustering is performed by adjusting SEs), as appropriate. Subgroup analysis and investigation of heterogeneity The overall risk of bias will not be used as the basis in conducting our subgroup analyses. However, where data are available, we plan to conduct the following subgroup analyses, independent of heterogeneity. Dose of folic acid supplementation: higher doses (4 mg or more, daily) versus lower doses (less than 4 mg, daily). Moderate-severe anaemia at baseline (mean haemoglobin of participants in a trial at baseline below 100 g/L for pregnant women and children aged six to 59 months, and below 110 g/L for other populations) versus normal at baseline (mean haemoglobin above 100 g/L for pregnant women and children aged six to 59 months, and above 110 g/L for other populations). Antimalarial drug resistance to parasite: known resistance versus no resistance versus unknown/mixed/unreported parasite resistance. Folate status at baseline: Deficient (e.g. RBC folate concentration of less than 305 nmol/L, or serum folate concentration of less than 7nmol/L) and Insufficient (e.g. RBC folate concentration from 305 to less than 906 nmol/L, or serum folate concentration from 7 to less than 25 nmol/L) versus Sufficient (e.g. RBC folate concentration above 906 nmol/L, or serum folate concentration above 25 nmol/L). Presence of anaemia at baseline: yes versus no. Mandatory fortification status: yes, versus no (voluntary or none). We will only use the primary outcomes in any subgroup analyses, and we will limit subgroup analyses to those outcomes for which three or more trials contributed data. Comparisons between subgroups will be performed using Review Manager 5.4 (Review Manager 2020). Sensitivity analysis We will perform a sensitivity analysis, using the risk of bias as a variable to explore the robustness of the findings in our primary outcomes. We will verify the behaviour of our estimators by adding and removing studies with a high risk of bias overall from the analysis. That is, studies with a low risk of bias versus studies with a high risk of bias. Summary of findings and assessment of the certainty of the evidence For the assessment across studies, we will use the GRADE approach, as outlined in (Schünemann 2021). We will use the five GRADE considerations (study limitations based on RoB2 judgements, consistency of effect, imprecision, indirectness, and publication bias) to assess the certainty of the body of evidence as it relates to the studies which contribute data to the meta-analyses for the primary outcomes. The GRADEpro Guideline Development Tool (GRADEpro) will be used to import data from Review Manager 5.4 (Review Manager 2020) to create 'Summary of Findings' tables. The primary outcomes for the main comparison will be listed with estimates of relative effects, along with the number of participants and studies contributing data for those outcomes. These tables will provide outcome-specific information concerning the overall certainty of evidence from studies included in the comparison, the magnitude of the effect of the interventions examined, and the sum of available data on the outcomes we considered. We will include only primary outcomes in the summary of findings tables. For each individual outcome, two review authors (KSC, LFY) will independently assess the certainty of the evidence using the GRADE approach (Balshem 2011). For assessments of the overall certainty of evidence for each outcome that includes pooled data from included trials, we will downgrade the evidence from 'high certainty' by one level for serious (or by two for very serious) study limitations (risk of bias, indirectness of evidence, serious inconsistency, imprecision of effect estimates, or potential publication bias).
Crider K ,Williams J ,Qi YP ,Gutman J ,Yeung L ,Mai C ,Finkelstain J ,Mehta S ,Pons-Duran C ,Menéndez C ,Moraleda C ,Rogers L ,Daniels K ,Green P ... - 《Cochrane Database of Systematic Reviews》
被引量: - 发表:1970年 -
Ruospo M ,Palmer SC ,Natale P ,Craig JC ,Vecchio M ,Elder GJ ,Strippoli GF ... - 《Cochrane Database of Systematic Reviews》
被引量: 59 发表:1970年
加载更多
加载更多
加载更多