Extraradical Mycorrhizal Hyphae Promote Soil Carbon Sequestration through Difficultly Extractable Glomalin-Related Soil Protein in Response to Soil Water Stress.
摘要:
Soil water stress (WS) affects the decomposition of soil organic carbon (SOC) and carbon (C) emissions. Glomalin, released by arbuscular mycorrhizal fungi into soil that has been defined as glomalin-related soil protein (GRSP), is an important pool of SOC, with hydrophobic characteristics. We hypothesized that mycorrhizal fungi have a positive effect on SOC pools under soil WS for C sequestration in GRSP secreted by extraradical mycorrhizal hyphae. A microsystem was used to establish a root chamber (co-existence of roots and extraradical mycorrhizal hyphae) and a hyphal chamber (the presence of extraradical mycorrhizal hyphae) to study changes in plant growth, leaf water potential, soil aggregate stability, SOC, GRSP, C concentrations in GRSP (CGRSP), and the contribution of CGRSP to SOC after inoculating Rhizophagus intraradices with trifoliate orange (Poncirus trifoliata) in the root chamber under adequate water (AW) and WS. Inoculation with R. intraradices alleviated negative effects on leaf water potential and plant growth after 7 weeks of WS. Soil WS decreased SOC and mean weight diameter (MWD), while AMF inoculation led to an increase in SOC and MWD in both chambers, with the most prominent increase in the hyphal chamber under WS. The C concentration in easily extractable GRSP (EE-GRSP) and difficultly extractable GRSP (DE-GRSP) was 7.32 - 12.57 and 24.90 - 32.60 mg C/g GRSP, respectively. WS reduced CGRSP, while AMF mitigated the reduction. Extraradical mycorrhizal hyphae increased GRSP production and CGRSP, along with a more prominent increase in DE-GRSP under WS than under AW. Extraradical mycorrhizal hyphae increased the contribution of CDE-GRSP to SOC only under WS. CEE-GRSP and CDE-GRSP were significantly positively correlated with SOC and MWD. It is concluded that extraradical mycorrhizal hyphae prominently promoted C sequestration of recalcitrant DE-GRSP under soil WS, thus contributing more organic C accumulation and preservation in aggregates and soil C pool.
收起
展开
DOI:
10.1007/s00248-022-02153-y
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(163)
参考文献(21)
引证文献(2)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无