Fallow Land Enhances Carbon Sequestration in Glomalin and Soil Aggregates Through Regulating Diversity and Network Complexity of Arbuscular Mycorrhizal Fungi Under Climate Change in Relatively High-Latitude Regions.

来自 PUBMED

作者:

Yang YLuo WXu JGuan PChang LWu XWu D

展开

摘要:

Soil aggregation and aggregate-associated carbon (C) play an essential function in soil health and C sequestration. Arbuscular mycorrhizal fungi (AMF) are considered to be primary soil aggregators due to the combined effect of extraradical hyphae and glomalin-related soil proteins (GRSPs). However, the effects of diversity and network complexity of AMF community on stability of soil aggregates and their associated C under long-term climate change (CC) and land-use conversion (LUC) in relatively high-latitude regions are largely unexplored. Therefore, an 8-year soil plot (with a 30-year cropping history) transplantation experiment was conducted to simulate CC and LUC from cropland to fallow land. The results showed that Glomus, Paraglomus, and Archaeospora were the most abundant genera. The diversity of AMF community in fallow land was higher than cropland and increased with increasing of mean annual temperature (MAT) and mean annual precipitation (MAP). Fallow land enhanced the network complexity of AMF community. The abundance families (Glomeraceae and Paraglomeraceae) exhibited higher values of topological features and were more often located in central ecological positions. Long-term fallow land had a significantly higher hyphal length density, GRSP, mean weight diameter (MWD), geometric mean diameter (GMD), and C concentration of GRSP (C-GRSP) than the cropland. The soil aggregate associated soil organic carbon (SOC) was 16.8, 18.6, and 13.8% higher under fallow land compared to that under cropland at HLJ, JL, and LN study sites, respectively. The structural equation model and random forest regression revealed that AMF diversity, network complexity, and their secreted GRSP mediate the effects of CC and LUC on C-GRSP and aggregate-associated SOC. This study elucidates the climate sensitivity of C within GRSP and soil aggregates which response symmetry to LUC and highlights the potential importance of AMF in C sequestration and climate change mitigation.

收起

展开

DOI:

10.3389/fmicb.2022.930622

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(139)

参考文献(31)

引证文献(1)

来源期刊

Frontiers in Microbiology

影响因子:6.058

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读